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1. In the present paper we generalize two theorems [3]
about directional derivative for the maximum functional., With
the aid of directional derivative one constructs cones of
decreasing directions and cones of admissible directions which
are used in the theory of Dubowicki-Miliutin [3]. When de-
termining the maximum of a funcitional it is important to know
the above-mentioned cones. The generalization proposed in our
paper extends the class of functionals for which these cones
can be constructed. The paper also gives an application of
the generalized theorem on directional derivative in the
theory of functionaf equations developed in [1].

2+ We recall certain definitions and theorems to be used
in the paper,

Let X, Y be complete metric-spaces.,

Definition 1. A point-to-set transformation
F:X— 2Y is said to be semicontinuous from below at a
point x, € X provided that for every sequence {xn} C X,
x,—~ X, and every y € F(xé) there exists a sequence
{yn} CY such that y e F(xn) and y,—~J,.

Definition 2 A polnt-to-set transformation
F : X-—--2Y is said to be closed at a point x, &€ X provided

the following implication holds
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qxdcx,x—*x e Kxp), 7, 3,) =(yMsFuJ)Q

n o* Yn
Definition 3. A point-to-set transformation

Fi: X ZY 1s sald to be uniformly compact in the neighbour-
hood of a point x,e X if there exists a neighbourhood V(xo)

of the point x, such that the closure xe&)x ) F(x) 1is a com-
pact set in Y, °
Definition 4. A point-to~-set transformaiion
F:X—2° that is semicontinuous from below and closed at
a point X, € X 1s said to be continuous at Xoe
Definition 5. 4 point-to-set transformation
F:X— 2Y is said to be semicontinuous from above at a point
x,e X provided that for every open set U containing the
set F(xo) there exists a neighbourhood V(xo) of x, such that
x e V(x,) implies F(x) c U. ,
Theoren Te If the transfermation F:X —2
continuous at a point x € X and uniformly compact in the
neighbourhood of X and if p ¢ XxY — R1 is continuous on.

{x,} x F(x_ ), then m(x) = max p(x,y) is continuous at x_. .

Theorem 2. If the transfommation P : X ——2Y is
continuous at a point X,.€ X and p : X><Y—-R1 is continuous
on {xo} x F(xo)_, then the transformation F 1 x—2Y defined

by F(x) = {yeF(x)| p(x,y) = sup p(x,2z)} 'is closed at x_.
zeﬁ?x) o

Yis

Definitions 1 - 4 and ‘Theorems 1 and 2 can be found in
[4], where the transformation semicontinuous from below is
called open. The notion of a transformation semicontinuous
from above is given by Berge [2].

Theorem 3. Let X be a linear space, and let
py ¢ X—-—R1, 1= 1,...’n, be functionals possessing a deri-
vative at a point xoc(X:' in the direction 1. Then m(x) =

= max pi(x) ‘has a derivative at the point x  in the direction
1<i<sn
1, where m'(x,,1) = max pi(xo,l) with I =?i : py(x,) =
lel
= m(xy)}.
Theorem 4., Let r(u,y) be a function defined and
continuous on R% x [O,T] differentiable with respect to u,
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with x’ (u,y) continuous on R? x [0, T]. Then the function
u{x) = m%xTJr(x(y),y), where x e C2[0,T] (cP[,T] denotes

the space of n~dimensional functions continuous on [0,T]),
has a derivative at any point x,e c? [0,7] in any direc-
tion 1, where m' (x,,1) = ?gﬁ (2 (x,(3),5),1(y)) and R, =

={yeb,T| mix,) = x(2,(y),3)}.
Theorems 3 and 4 togehter with proofs can be found in[3].
Theorem 5. If 4, Bareany numbers and a,be (0,1),

then the sequence oy = max{4 + ac, 4 B + bcn_1), D= 2,3,000

with ¢, = max(4,B) is convergent andn%ig c, = max (T%E' T%E)'

The proof of this theorem can be found in [9h
Theorem 6. If functions g and h are continuous
on [0, +e), g(0) = h(0) = O, and if they have derivatives
at 0, then the solution f(x) of the egquation f(x) =
= “é%%xx][g(y) + h(x-y) + £(ay+b(x-y))] , where a and b are

given numbers in (O, 1)(08150 possesses a derivative at 0 and

£' (0) = max (gji%),\%:ﬁ——-. This theorem is also proved
in 5],

3. We shall formulate and prove three lemmas and a theorem
with a corollary being & generalization of Theorems 3 and 4.

Lemma 1, Let Y be a compact metric space with me~
tric p ; and let A be a closed subset of Y, Then the transfor-
mation R & [0, +e) — 2¥ defined by R(q) —{'ye Y| min Q(Z,y)éq}

is continuous at the point q = 0 and uniformly compact in the
neighbourhood of 0.

" Prooft. Let dA(y) denote the distance between y and
A. It is a continuous function on Y. Hence the function ¢(y,q)=
= d,(y)-q is contiauous on the product Y= [0,+w). We have
R(q) ={yeY|e(y,q) < } Since ¢ is continuous, R is closed,
and the compactness of Y implies that R is uniformly compact
in the neighbourhood of 0., We are going to show that R is
semicontinuous from below at q = 0., To this aim we have to
show that for every sequence {qn} [O +00), Q@ 0 and .any
Yo € R(0) = A there exists a sequence {yn} C Y such that
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Y€ ﬁ(qn) and y,— y,. Accordingly, let {q,} satisfy the
hypothesis above and y e R(0) = A. Since 0 < 9, < q, implies
that R(q,) ¢ R(q,), we see that ¥, € R(q) for every q > 0.
It suffices to take Yo =3 for n = 1,254

Lemma 2. Let Y be a compact metric space and
a : [0,60] — 2¥ a constant function defined by ale) = Y for
0<e <e.. Let ¢ : [O,EOJXY—'R1 be a continuous functional
on the product {0} xY, with the derivative with respect to
e 8t ¢ = 0 continuous with respect to y € Y and satisfying
the condition

*) 1im w(eg)s-w(O,y)

£-Qt
Y~Yo

Then p(e,y) = ¢(0,5) +£¢(0,5) + cele,y) for 0< e <&y, y € ¥,
where e(e,y) is a function defined on the product [O,eo] <Y
and continuous on {O}xY with 1lim max e(c,y)=lim min e(e,y)=
= 0, £-0t yeY E+~0t ye¥

= ¢ (O,yo) for every y, ¢ Y.

Proof. The existence of ¢/(0,y) implies that there
exists a funtion e(e,y) defined on [0,£o] x Y and satisfying
the conditions:

(1) ¢(0,y) = 0 for every yeY
(2) 1im e{e,y) = O for every ye¥
€ ~o* ,
(3) ¢(e,y) =¢(0,y) + e9(0,3) +eele,y).
From (3) and (*) it follows that 1:Lm+ e(e,y) = 0 for every
=

¥o€ Y which shows that e(e,y) is continuous on {0} xY. In
view of the fact that a(e) 1s continuous at 0 and uniformly
compact 1n the neighbourhood of O, this implies that the
functions E,(€) =;nea¥ e(e,y) and Ez(e) = glé% e(e,y) are con-
tinuous at € = 0, in accordance with Theorem 1. Hence and from
E,(0) = E,(0) = O we get e]:}én*.E1(€) =\£._}161+E2(5) = 0, which ends

the proof of Lemma 2,
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Lemma 3, Let Y be a compact metric space with
metric g, and let & 1 [0y400) — 2Y be a closed map. Then there
exists a function o : [0,+e) — R! having the 1limit at O equal
to O and satisfying the condition

g(e)cR(q) ={yeY| min g(y,z)'< q} for €20 and q =o(e).
2ed(0)

Proof. Since & is closed and Y compact, it follows
that & is semicontinuous from above (see [2]). Since for every
q > 0 the set R(q) is open in Y and d(0) c R(q), this implies
that for every q > O there exists a number g(q) > O such that

1° &(e)cR(q) for 0 < & < (q)
2° p(qq) <p(g,) whenever 0 < gy € gy

In fact, 2° follows from the inclusion
(a(e) cR(q,), 0<qy<q,) = &(e) c R(g,).

Let &(e) = inf {q>0]B(q)>e},e20. From 2% 1t follows that
& 1is monotonic, and consequently the limit lim a(e) =g=0

exists. We are going to show that q = O, Suppose that q > 0.
Then 1° implies that é(e)cR(-g-) for 0 < ¢ <ﬂ(§). Since

g €e{q>0 : B(q) > e} for ose:S/s(g), 1t follows that

&(e) < 3<q for 0 < ¢ <ﬁ(§) which contradicts the obvious
inequallty &(e) =g for every € >0, Hence q 0. Prom the de-
finition of & it follows that for every €20 there exists
«(€) >0 such that a(e)s= oc(e) +€&andpg[ale)] >€e . It 18 easy

to see that 1lim cx(E) and that condition 1° holds for
e-o*
€20 and g =af(e). This ends the proof of Lemma 3.

Theorem 7. Let Y be a compact metric space and
let ¢z [0, ]xY — R be a functional continuous on {0} x Y
with derivative ¢'(0,y) continuous on Y and satisfying condi-
tion (*). Then the functional ¢(e) = ma§ ¢(e,y) also possesses
a derivative at 0, and &' (0) = max ;ae(O,y), where Y(e)

={ye¥|ple,y) =¢(c)}. ye¥(0)
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Proof . Putting a(e) = Y for every 0 < ¢ < ¢, and
using Lemma 2 we have ¢ (e,y) = ¢(0,y) +e;%'(0,y) + cele,y)
for 0 <¢ <€, and ye Y, where e(e,y) has been defined above.
From this representation of ¢(e,y) we infer that for 0< ¢ < £,
and ye Y we have

$e) = max ple,y)> e (e.v)> o [#(0,y) +ep(0,3) + ce(e,y)] >

29(0) + ¢ max [;o(O,y) + e(e,,y)]>§(0) + £ max yJ(O,y) +emin e(e,y).
ye¥(0 ye¥(0) ¢ yey
For any g> O let R(q) ={yG_Y| min q(z,y)<q}, where g 1is
: z e ¥(0)

the metric in Y, By Lemma 2, denoting the closure of R(q)

by R(q), we have ¥(&)c R(q) for 0O<e<e and q =« (&), where
o is some function tending to 0 together with ¢. Consequently,
for 0<e<¢g, and q =« (¢) we have

() = (e,y) ¢ ma (€,y) ¢« max ¢(e,y)< max [¢(0,y) +
ple 3:;‘? ! erJ(ré)P yeR(q) veR(q [

+e‘qé(0'.y) +ee(e,y)]< y;n%n(cq) p(0,y) + ;:63?:) [£(0,¥) + e(e,y)] <

. R o] [/ (0,
<@ (0) + f,e"ﬁ?:) g (0.y) + ;;Rn?:) ele,y) ¢ $(0) + ;:ﬁ?:)f, ¥) +

+ & max e(E,y).
ye¥

Recapitulating we can write the inequality

min e(e,y) + max :p(o ¥) <€ $(e)-4(0) < max ¢ (0,y) + max ele,y)
ye¥ ye¥(0) ¢ E TyeR(a) € yey

which holds for 0<e <&, and q =a(€). Taking limit with
€ —~ 0% we obtain the thesis, because
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1im max e(e,y) = 1im min e(e,y) = O
e—=0* yey e-0t yev

and

lim max <pé(0,y) = max ¢(0,y)
£—+0" yeR(x(e)) ye¥(0)

by means of Lemmas 1 and 2 as well as Theorem 1.
Corollary 1. Let X be a linear space, Y a com-
pact metric space and let F : X ——2Y be a constant map, i.e.
P(x) = Y for every xeX. Let p : XxY —~R! be a functional
whose derivative in the direction 1 at a point x,e X exists
for every ye Y and is continuous with respect to y. Let
p(x, +€1l,y) be a function defined on [0, £,] % Y and conti-
nuous on {O}XY. Assume that the following condition holds

p(x +¢e1,y)-p(x_,y) :
(**) 1im 0 ’5 o'’ p' (x,,135,) for every y, e Y.
g0t
¥+¥o

Then there exists a derivative of the function m(x) =
= x in the direction 1 at x_ and m' {(x_,1) =
L p(x,y) o (xgs1)

X p (xo,l;y), where
yeF(x))

F(xy) ={yeP(xy) | m(x,) = plx,,¥)}.

Proof. Let ale) =F(x0+51),§(e)=i‘(xo+el),

ple,y) = plx, +€1,3), 8 (€) = m(x, + ¢1). Then it is easy
to see that our corollary follows directly from Theorem 7.
Observe that Corollary 1 is a generalization of Theorem 3.
Namely, let Y = {1,2,...,:1}, P(x) = Y for every xeX, p(x,y) =
= p; (%) (i = 1,044,n), f(xo) = I. Condition (**) is equivalent
to the existence of the derivative p'i(xo,l) for 1 = 1,2,40e4n
We shall show that Corollary 1 generalizes Theorem 4 as
well. Let X =-¢?[0,1], ¥ = [0,T], F(x) = [0,T] for every x eX,
p(x,y) = z(x(y),y), F(x,) = R,. Condition (**) follows from
the continuity of r(u,y) and r:l(u,y) with respect to the va-
riables u,y.
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The following example shows that condition (**) is essen-
tial for the validity of Corollary 1.
pxample 1. LetX=R,Y=1[0,1],x =0,1=1.

0 for y2x
We define p(x,y) = if y £ 0 and p(x,0)=0,
Vy(x-y) for y<x '
Then
0 for'x £ 0
m(x) = mgx p(x,y) =1 & for 0 < x £ 2
yeF?x) PLX,Y 5

Yx-1 for x > 2,

"Mhe derivative p' (O,1;yo) exists for every Yo e [0,1] and
equals O, On the other hand m' (0,1) = % « We easily check that
cradition (**) does not hold.

The assumption of Theorems 3 and 4 and of Corollary 1
that P is constant cannot be dropped as shown by the following
example.

Example 2. LetX=R, Y

p(x,y) = y2 + (x-y)3. We define

[0’2]’ XO =1,

A
o

{o} for x
P(x) = _ [0,x] for 0 <x <2
[0,2] for x> 2.

Then we have (a)

3

x” for x £0

(a) m(x) = ma@t [y2 + (x-y)3] = max [xz,xB:l ={x° for 0 £ x & 1
yeF(x) ‘

3

x” for x » 1.

This implies

{o} for x<0
. {x} for 0<£x <1
F(x) = {0, for x =1
{o} for x > 1.
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It is easy to see that the trensformation ¥ is not con-
tinuous at x = 1. Computing m'(1,1) by means of (a) we
obtain

21 for 1 <0
m (1,1) =
31 for 1 > 0.

On the':other hand, in view of the thesis of Corcllary 1 we
have
31 for 1> 0
. _ 2 ]
m'(1,1) = m%x1[3(1-y) 1 =
ve {0, 0 for 1< 0.

Hence for 1 < 0 we obtain a contradiction.

In turns out that in many cases the transformation that
is not constant can be turn into a constant one by means of
a suitable substitution. This fact allows us to extend the
class of functionals to which Theorem 7 applies.

4, Now we are going to indicate some applications of
Theorem 7. We consider the equation

f(x) = max [8(y) + hix-y) + f(ay+b(x-y)ﬂ ’
yelo,x]

where g(x) and h(x) are given functions continuous for x > O,
where g(0) = h(0) = 0, a and b are given numbers in the in~-
terval (0,1), and f(x) is an unknown function. Substituting
y = tx we obtain the equation

f(x) = tg§f1][g(tx) + h(x-tx) + f(atx+bx(1-t))].
We consider a sequence of successive approximations
£i(x) = L max [g(tx) + h(x-tx)]

e[0,1
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fn(x) = tnéa[:g,1][g(tX) + h(x-tx) + fn__,l(atx-l-bx(‘l—t))], n=2,3,000

If we assume that the functions g and h have derivatives
at 0, then from Theorem 7 it follows that f, (n=1,2,...) have
derivatives at 0 and

£,(0) - max J[tg(O) + (1-t)H(0)] = max[¢(0),H(0)]

£.,(0) = max
2 %

e[o'ﬂ[tg'(o) + (1-t)ﬁ(0)+(at+b(1-t))fV1(o)] -

= max [g(0)+af(0), H(0)+b£!(0)],

and generally for n & 2
£,(0) = max[g(0)af],_,(0), K(0)+bfy ,(0)] .

Note that the hypotheses of Corollary 1 hold, in particular
assumption (**) i.e.

) for every t ¢ (o0,1]
p,(0+e,t) - pp(0,8)
1im g = pL(0,15%,)

+ .
£—+0 and n = 1,245,004,
t—-to

where pn(x,t) = g(tx) + h(x~-tx)-+ fn_1(atx+bx(1-t)) for n = 2
and p,(x,t) = g(tx) + h(x=-tx).
In fact, e.g. for n = 1 and toe,(0,1) we have

g(te)+h((1-t)€)-g(0)~h(0) _ glte)t , h((1-t)e), ,_ Jg
lin 2 - 2in [BGLE BTGy

t-t, bty
= g‘(o)tO + H(0)(1-t ),

and for to = 0 and to = 1 the above limit equals h(0) and
g'(0), respectively.
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From Theorem 5 it follows that 1lim £, (0) = f'(0), i.e.

n-eoco
Ay ., . ! ' g'(0) K(0) |
£'(0) = max[g(o) + af(0), H(0) + bf(O)] = max |25

Hence we have obtained the thesis of Theorem 6.
Now we consider another functional equation, the so-called
equation with not complete separation

f(x) = max |g(y.) + h(y,) + £(ay,+by,+x-y.-¥,)]|,
qua‘x[ 1 2 1#0Yp+ =Y 1-¥5)]

¥42 O,yaz 0

where the assumption about the functions g and h remain as
before.Suppose that the functions g and h have non-negative
derivatives at O., Consider the sequence of successive approxi-
mations

fn(x) = max [e(y,]) + h(y,) + fn_1(ay,1+by2+x—y1-y2)] 2 D=2,3, 000,
NPE PO S

Y42 0,¥,2 0

where f1(x) = max [g(y1) + h(y2)J.
y1+32$ X
y,,z O,y2> 0

Substituting ¥q = t1x, ¥, = t2x we obtain

f_n(x) = . max< [g(tﬂx) + h(t2x) + fn_,l(at1x+bt2x+x-t1x-t2x)]
1+t2\ 1
t,]Z 0,"&22 0 for n=2,3,e.s
f.(x) = max [g(t x) + h(t xﬂ o
1 b4t < 1 2
1* 2\1
)2 0,t,3 0

Applying Theorem 7 and taking into account that g'(0) and
h'(0) are non-negative we get
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fa(o) = max ft1g’(0) + tzh'(O)J = max [g%O),hKO),O] =

t1+t2$ 1

£, 0,t,> 0

= maxﬂg(o),ﬁ(oﬂ

fg(o) max [t1g’ (0) + to (0) + (at1+bt2+1-t1-t2)fl](0)'] =

t1 +t2 <1

12 0,8, 0

1

max [ g' (0) + af(0), ¥ (0) + bey(0), £,(0)] =

max [g'(0) + af;(0), ' (0) + b£,(0)]

and generally
£,(0) = max{g' (0) + afy_,(0), n (0) + bfh_1(0ﬂ .

By Theorem 5 we have
! ' (0) h (0
lim £,(0) = max (E27, 5.

Note that also in this case the assumption (*) of Theo-
rem 7 holds.
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