
DEMONSTRATE) MATHEMATICA 
Vol IX No 1 1976 

Stanistaw Kiettyka, Wiesbw Sobieszek 

A GENERALIZATION OF THE THEOREM 
ON DIRECTIONAL DERIVATIVE FOR THE MAXIMUM FUNCTIONAL 

AND ITS APPLICATION 

1. In the present paper we generalize two theorems [3] 
about directional derivative for the maximum functional. With 
the aid of directional derivatiye one constructs cones of 
decreasing directions and cones of admissible directions which 
are used in the theory of Dubowicki-Miliutin [3]. When de-
termining the maximum of a functional it is important to know 
the above-mentioned cones. The generalization proposed in our 
paper extends the class of functionals for which these cones 
can be constructed. The paper also gives an application of 
the generalized theorem on directional derivative in the 

4 

theory of functional equations developed in [1]. 

2, We recall certain definitions and theorems to be used 
in the paper. 

Let X, Y be'complete metric*spaces. 

D e f i n i t i o n 1 . A point-to-set transformation 
Y 

F : X —- 2 is said to be semicontinuous from below at a 
point xQ £ X provided that for every sequence C X, 
x Q—- x.Q and every yQ e F(x^) there exists a sequence 
{ J n } C Y such that y Q e. P(xQ) and yfl — y 0. 

D e f i n i t i o n 2. A point-to-set transformation 
Y 

F s X — 2 is said to be closed at a point x Q e X provided 
the following implication holds 
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D e f i n i t i o n 3. A point-to-set transformation Y 
F i X — 2 is said to be. uniformly compact in the neighbour-
hood of a point xQ e X if there exists a neighbourhood V(xQ) 
of the point x„ such that the closure U F(x) is a com-

° xeV(xQ) pact set in Y. 
D e f i n i t i o n 4 . A point-to-set transformation Y 

F:X — 2 that is semicontinuous from below and closed at 
a point xQ e X is said to be continuous at xQ. 

D e f i n i t i o n 5. A point-to-set transformation Y 
F : X — 2 is said to be semicontinuous from above at a point 
xQ e. X provided that for eveity open set U containing the 
sot F(Xq) there exists a neighbourhood V(x0) of xQ such that 
x e. V(x ) implies P(x) c U. Y T h e o r e m 1. If the transformation F:X — 2 is 
continuous at a point x e X and uniformly compact in the 

1 neighbourhood of xQ and if p s X*Y — R is continuous on 
ix„l x F(x ), then m(x) = max. p(x,y) is continuous at x . . 1 0J ° yeF(x) 0 

T h e o r e m 2. If the transfomation F : X — 2 is 1 continuous at a point x e. X and p : X x Y — - R is continuous 
~ Y on {xQ}x P(xQ), then the transformation P : X — 2 defined 

by P(x) = { y e. F(x) [ p(x,y.) = sup p(x,z)} is closed at x . 
z e F ( x ) ° 

Definitions 1 - 4 and -Theorems 1 and 2 can be found in 
[4], where the transformation semicontinuous from below is 
called open. The notion of a transformation semicontinuous 
from above is given by Berge [¡2]. 

T h e o r e m 3. Let X be a linear space, and let 
p^ : X —- R1, i = 1,...,n, be functionals possessing a deri-
vative at a point x0£(Xjin the direction 1. Then m(x) = 
= max p.(x) has a derivative at the point x in the direction 
1«i<ri 1 ° 
1', where m' CxD,l) = max p^(x0,l) with I = |i : = 
= m(x0)j. 

T h e o r e m 4. Let r(u,y) be a function defined and 
continuous on Rn * [o»t] differentiable with respect to u, 
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with r^(u,y) continuous on R n * [0,T]. Then the function 
m(x> = ̂ m^c^rUCyJ.y), where x e Cn[0,T] (Cn[o,T] denotes 
the space of n-dimensional functions continuous on [0,T]), 
has a derivative at any point x Q e C n [0,T] in any direc-
tion 1, where m' (xQ,l) = ma^ (r^Xpiy) ,y) ,l(y)) and RQ = 
^ {y £ CO,T]| m(x0) =-• r(*0(y),y;}. 

Theorems 3 and 4 togehter with proofs can be found in [3]. 
T h e o r e m 5. If A, B are any numbers and atb e(0,1), 

then the sequence c Q = max(A + acn__^, B + n = 2,3,... 
with c1 = max(A,B) is convergent and^lim cfl = max i^b) • 

The proof of this theorem can be found in [5]. 
T h e o r e m 6. If functions g and h are continuous 

on [0, +»o) t g(0) = h(0) = 0, and if they have derivatives 
at 0, then the solution f(x) of the equation f(x) = 
= max [g(y) + h(x-y) + f(ay+b(x-y))] , where a and b are 
given numbers in (0,1). also possesses a derivative at 0 and 
f (0) = max ). This theorem is also proved 
m [5]. 

_3. We shall formulate and prove three lemmas and a theorem 
with a corollary being a generalization of Theorems 3 and 4. 

L e m m a 1. Let Y be a compact metric space with me-
tric P i and let A be a closed subset of Y. Then the transfor-' — V — 
nation R : [0, +«>) —• 2 defined by R(q) = ( y e Y I min p (z,y) 6q} 

1 zeA ^ J 

is continuous at the point q = 0 and uniformly compact in the 
neighbourhood of 0. 

P r o o f . Let d^(y) denote the distance between y and 
A. It is a continuous function on Y. Hence the function </> (y, q)= 
= d^(y)-q is continuous on the product Y*[0,+eo). We have 
R(q) = { y £ Y | <p(y ,q) o}. Since <f is continuous, R is closed, 
and the compactness of Y implies that R is uniformly compact 
in the neighbourhood of 0. We are going to show that R is 
semicontinuous from below at q = 0. To this aim we have to 
show that for every sequence { qfl} c[0,+oo), q Q — 0 and any 
y o€R(0) = A there exists a sequence |y n] C Y such that 
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y f le.R(qn ) and y n — yQ . Accordingly, l e t |qQJ sa t i s f y the 
hypothesis above and yQe R(0) = A. Since 0 4 q1 é q2 implies 
that R(q.,) c R (q 2 ) , we see that y0 e R(q) f o r every q > 0. 

I t su f f i ces to take y = yQ f o r n = 1 , 2 , . . . 
L e m m a 2. Let Y be a compact metric space and y 

a : [0»£ o ] —• 2 a constant function defined by a U ) = Y f o r 
0 ^ £ ^ £q . Let <p : [ 0 , £ o ] x ï - R ^ be a contiguous functional 
on the product { 0 } x Y, with the der ivat ive with respect to 
e at £ = 0 continuous with respect to y e Y and sa t i s fy ing 
the condition 

( * ) lim J L k i Z l p f i O ^ _ . ( 0 > y j f o r e v e r y 6 Y > 
£-0+ t o o 
y~y 0 

Then- f i t ,y ) = f ( 0 , y ) + £?>£'(^,y) + £ e U , y ) f o r 0 ^ e é eQ f y e Y, 
where e ( e , y ) i s a function defined on the product [0,£Q ] X Y 
and continuous on { 0 } x Y with lim max e(£,y)=tlim min e ( e , y ) = 
= 0 > £-0+ yeY £-0+ yeY 

P r o o f . The existence of p£ '(0,y) implies that there 
ex ists a funtion e ( e , y ) defined on [0 ,£ Q ] x Y and sa t i s fy ing 
the conditions: 

(1 ) e (0 ,y ) = 0 f o r every y e Y 

(2 ) lim e (£ ,y ) = 0 f o r every yc 'Y 
e ~o+ 

(3 ) fit, y ) = p (0,y ) + £ (0,y ) + £ e ( £ , y ) . 

Prom (3) and ( * ) i t fo l lows that lim e (£ ,y ) = 0 f o r every 

y~y 0 

yQe Y which shows that e (£ ,y ) i s continuous on { 0 } * Y . In 
view of the fact that a ( e ) i s continuous at 0 and uniformly 
compact in the neighbourhood of 0, this implies that the 
functions E1 (£ ) = max e ( e , y ) and E0 (£ ) = min e ( s , y ) are con-

1 yeY ^ Y 
tinuous at e = 0, in accordance with Theorem 1. Hence and from 
E..(0) = E o (0 ) = 0 we get lim E.,(£) =^lim E0 ( f i ) = 0, which ends 

I t—o+ ' £-0+ * 
thé proof of Lemma 2. 

- 50 



A. theorem on directional derivative 5 

L e m m a 3 . Let Y be a compact metric space with 
y 

metric o, .and let a : [0,+») — 2 be a closed map. Then there 
' A 

exists a function a : [0,+«?) — R having the limit at 0 equal 

to 0 and satisfying the condition 

a U ) c R ( q ) = { y e Y I min f(y,z) < q} for £ > 0 and q = oc(e), 
zea(0) 

P r o o f . Since a is closed and Y compact, it follows 

that a is semicontinuous from above (see [2]). Since for every 

q > 0 the set R(q) is open in Y and a(0)c R(q), this implies 

that for every q > 0 there exists a number /3(q) > 0 such that 

1° a(f) cR(q) for 0 6 £ 6 /3 (q) 

2° fi (q1) *£:/3(q2) whenever 0 < q1 ^ q2« 

In fact, 2° follows from the inclusion 

(a(e)cR( q i), O c q ^ q g ) => 8 ( £ ) c H ( q 2 ) . 

Let (2(e) = inf {q > 0 | J3 (q).»e} , 0. From 2° it follows that 

«. is monotonic, and consequently the limit lim<x(£) = qs>0, 

exists. We are going to show that q = 0. Suppose that q > 0. 

Then 1° implies that §(ij c R(|-) for 0 4 e 4/3(|-). Since 

| e { q > 0 :y3(q)>e} for 0 ^ e ¿;3(|), it follows that 

S(e) ^ | < q for 0 6 e ¿y3(|) which contradicts the obvious 

inequality a (e) ̂  q for every e > 0 . Hence q = 0. Prom the de-

finition of a it follows that for every £ ? 0 there exists 

a(£) > 0 such that a(e; = a(e) + e and £ [ a(£j] > e . It is easy 

to see that lim a(£) = 0 and that condition 1° holds for 
£-0 

£ >0 and q =a(e). This ends the proof of Lemma 3. 

T h e o r e m 7. Let Y be a compact metric space and 

let f : [0,£ o]* Y — R 1 be a functional continuous on {0} * Y 

with derivative p£'(0,y) continuous on Y and satisfying condi-

tion (*). Then the functional $(£) = raax^(£,y) also possesses 

a derivative at 0, and (0) = max ^/(0,y), where Y(e) = 

= {y £ Y | y> =$(£)}. 
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P r o o f . Putting a(e) = Y for every 0 ^ e & eQ and 
using Lemma 2 we have y>U ty) = p(0,y) + ££ (0 ,y ) + £e(e ,y) 
for 0 < £ « e o and y £ Y, where eU,y) has been defined above. 
Prom this representation of f { t , y ) we infer that for 0 4 £ 4 £Q 

and y e. Y we have 

$(t) = max ,y)> maxy>(£,y)> max f>(0,y) + £p'(0,y) +£e(e,y)l^ 
ytY yfeY(O) ye 7(0) « 

>§(0) + £ max [V(0,y) + e(£,y)li$(0) + £ max W0,y) + £min e(£,y). 
y e Y(0)L£ y 6 5(0) £ yeY 

For any q> 0 l e t R(q) = { y e Y I min o ( z , y ) < q} f where g i s 
z t ? ( o ) J 

the metric in Y. By Lemma 2, denoting the closure of R(q) 
by R(q), we have Y(£)c R(q) for 0 4 £ i £ Q and q = « ( £ ) , where 
a. i s some function tending to 0 together with e . Consequently, 
for 0 ^ £ ^ £Q and q = ot {& ) we have 

= max (f (e ,y) 4 max j»(£,y)4 max y>(f,y)4 max f<p(0,y) + 
y£Y yfeY(£) yeR(q) ytR(q) 

+ £ <fl (0,y) + £ e(e ,y)l 6 max f(0,y) + £ max [g'(0,y) + e(e ,y)] ^ 
£ yeR(q) ytR(q) 

(o) + £ max ®'(0,y) + £ max e(£ ,y) 4 # (0) + £ max f/r>'(0,y) + 
yeR(q) £ ytR(q) ytR(q) £ 

+ £ max e(t,y). 
yeY 

Recapitulating we can write the inequality 

min e(e , y) + max %'(0,y) < ^ max ®'(o,y) + max e(fi,y) 
yeY yeY(O) £ 6 yeR(q) ye* 

which holds for 0 6 t ^ £Q and q = « ( £ ) . Taking l imit with 
£ — 0 + we obtain the thes is , because 
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lim max e(£,y) = lim min e(e,y) = 0 
£ 0+ y £ Y 0+ ye.Y 

and 

lim max 0,y) = max 
0+ yeR («(e)) yeY(O) 

by means of Lemmas 1 and 2 as well as Theorem 1. 
C o r o l l a r y 1 . Let X be a linear space, Y a com-

Y 
pact metric space and let F : X — 2 be a constant map, i.e. 
F(x) = Y for every x e X. Let p : X * Y — R1 be a functional 
whose derivative in the direction 1 at a point x Qe X exists 
for every y e Y and is continuous with respect to y. Let 
p(xQ + £l,y) be a function defined on [0, £0] x Y and conti-
nuous on {o}*Y. Assume that the following condition holds 

( ) lim 2 2 = p. i.j ) f 0 r every y e Y. £ — 0+ 0 0 0 y~y0 
Then there exists a derivative of the function m(x) = 
= max p(x,y) in the direction 1 at x„ and m' (x„,l) = yeF(x) 0 0 

= yelfx )P" where 

? U 0 ) = ( j £ P ( x 0 J | n U 0 ) =p(i0,y)}. 

P r o o f . Let a U ) = P(xQ + £l), a(e) = P(xQ + £l), 
<p(e ,y) = p(x0 + £l,y), § {¿) = m(xQ + £ 1). Then it is easy 
to see that our corollary follows directly from Theorem 7. 

Observe that Corollary 1 is a generalization of Theorem 3. 
Namely, let Y = {l,2,...,n}, F(x) = Y for every x £ X, p(x,y) = 
= pi(x) (i = 1,...,n), F(xq) = I. Condition (* *) is equivalent 
to the existence of the derivative p'i(x0,l^ for i = 1,2,...,n. 

We shall show that Corollary 1 generalizes Theorem 4 as 
well. Let X =>-Cn[0,T], Y = [0,T] , F(xJ = [0,T] for every xeX, 
p(x,y) = r(x(y),y), F(XQ) = Rq. Condition C *) follows from 
the continuity of r(u,y) and r'u(u,y) with respect to the va-
riables u,y. 
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The following example shows that condition (* *) is essen-
tial for the validity of Corollary 1. 

E x a m p l e 1 . Let X = R1, Y = [0, l] , xQ = 0, 1=1. 
0 for y »x 

We define p(x,y) =• if y ^ 0 and p(x,0;=0. 
Vy(x-y) for y < x 

Then 

m(x) = max p(x,y) = yeF(x) 

for'x 4 0 
for 0 < x 4 2 
for x 5» 2. 

x 
2 

The derivative p' (0,1jy) exists for every yQ e. [0,1] and 
equals 0. On the other hand m' (0,1) - ^ . We easily check that 
crnJition (**) does not hold. 

The assumption of Theorems 3 and 4 and of Corollary 1 
that P is constant cannot be dropped as shown by the following 
example. 

E x a m p l e 2. Let X = R1, Y = [0,2], x = 1, 2 3 p(x,y) = y + (x-y.) . We define 

F(x) = 

Then we have (a) 

{0} for X < 0 
[0,x] for 0 4 x 4 £ 
[0,2] for X > 2. 

(a)' m(x) = max [y2 + (x-yp] = max [x2,x^] = 
ytF(x) 

x for x 4 0 
X 2 for 0 4 x 4 1 
xJ for x > 1. 

This implies 

P(x) = 

{0} for X 4 0 
{*} for 0 4 x < 1 
{0,1} for X = 1 
{0} for X > 1 . 
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It is easy to see that the transformation F is not con-

10UE 

obtain 
tinuous at xQ = 1. Computing m'(1,1) by means of (a) we 

m' (1,1) = 
21 for 1 < 0 

31 for 1 > 0. 

On the' other hand, in view of the thesis of Corollary 1 we 
have 

'31 for 1 > 0 
m' (1,1) = max [3(1-y)2 l] = 

ye{0,l} 
0 for 1 < 0. 

Hence for 1 < 0 we obtain a contradiction. 
In turns out that in many cases the transformation that 

is not constant can be turn into a constant one by means of 
a suitable substitution. This fact allows us to extend the 
class of functionals to which Theorem 7 applies. 

4. Now we are going to indicate some applications of 
Theorem 7. We consider the equation 

f(x) = max [g(y) + h(x-y) + f(ay+b(x-y);] » 
ye[0,x] 

where g(x) and h(x) are given functions continuous for x > 0, 
where g(0) = h(0) = 0, a and b are given numbers in the in-
terval (0,1), and f(x) is an unknown function. Substituting 
y = tx we obtain the equation 

f(x) = max [g(tx) + h(x-tx) + f(atx+bx(1-t))1 . 
tetP,1] J 

We consider a sequence of successive approximations 

f^(x) = max [g(tx) + h(x-tx)] 
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f ( x ) = max [ g ( t x ) + h ( x - t x ) + f . ( a t x + b x ^ - t ) ) , n=2 ,3 ,« 
n t e [ 0 , l ] n ~ ' J 

I f we a s s u m e t h a t t h e f u n c t i o n s g a n d h h a v e d e r i v a t i v e s 

) , t h e n f r o m T h e o i 

d e r i v a t i v e s a t 0 a n d 

a t 0 , t h e n f r o m T h e o r e m 7 i t f o l l o w s t h a t ( n = 1 , 2 , . . . ) h a v e 

f V ( O ) = m a x [ t g < 0 ) + ( l - t ) r i ( O ) ] = m a x f g ( 0 ) , h ' ( 0 ) l 
' t € . [ o , l ] L J 

f ' o ( 0 ) = m a x f t g ' ( O ) + (1 - t ) H ( 0 ) + ( a t + b ( 1 - t ) ) f ! . ( 0 ) 1 
t e t o . l j 

= m a x [ g ' C O + a f ' ^ O ) , h ' C O + b f ^ ( 0 ) ] , 

a n d g e n e r a l l y f o r n ^ 2 

f n ( 0 ) = m a x [ g ' ( 0 ) + a f ^ _ ^ ( 0 ) , K ( 0 ) + b f ^ _ 1 ( 0 ) ] . 

N o t e t h a t t h e h y p o t h e s e s o f C o r o l l a r y 1 h o l d , i n p a r t i c u l a r 

a s s u m p t i o n ( * * ) i . e . 

f o r e v e r y t e [ o , 1] 
p n ( 0 + £ , f ) - p ( 0 , t ) 0 

l t m 5 P ' n ( 0 , 1 ; t o ) 

a n d n = 1 , 2 , , . . , 
t — t 

o 

w h e r e p n ( x , t ) ? g ( t x > + h ( x - t x ) - + f n _ . j ( a t x + b x ( 1 - t ) ) f o r n > 2 

a n d P l ( x , t ) = g ( t x ) + h ( x - t x ) . 

I n f a c t , e . g . f o r n = 1 a n d t 6 . ( 0 , 1 ) we h a v e 

l i m 8 ( t £ ) + h ( ( l - t ) £ ) - g ( 0 ) - h ( 0 ) = l i m r g ( t £ ) t +
 h , ( j 1 r V £ ) ( l - t ) 1 = 

£—o+ £ e . - o + L t £ U " t M J 

t - t 0 , t ~ t 0 

= g"( o ) t Q + H ( o ) d - t 0 ) t 

a n d f o r t Q = 0 a n d t Q = 1 t h e a b o v e l i m i t e q u a l s h ' ( 0 ) a n d 

g ' ( 0 ) , r e s p e c t i v e l y . 
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Prom Theorem 5 it follows that lim f^(0) = f'(O), i.e. 
n>—oo 

f(07 = max[g'(0) + af'(O), ti(0) + bf'(O)] = max [fl^ ] 

Hence we have obtained the thesis of Theorem 6. 
Wow we consider another functional equation, the so-called 

equation with not complete separation 

f(x) = max [g(y.|) + h(y2) + f(ay.,+by2+x-y .j-y^J , 

V^* 0,y25 0 

where the assumption about the functions g and h remain as 
before.Suppose that the functions g and h have non-negative 
derivatives at 0. Consider the sequence of successive approxi-
mations 

fn(x) = max [g(y1) + h(y2) + ^^(ay^+byg+x^-yg)] , n=2,3,..., 

0,y2? 0 

where f.,(x) = max [giy^ + h(y2)J. y1 +y2 ̂  x 
y-]» 0iy2> o 

Substituting y1 = t ^ , y 2 = t2x we obtain 

fh(x) = max [gC^x) + h(t2x) + f ^ (a^x+btgx+x-^x-tgx)] 
"tvj ^ 
t ^ O . t ^ O for n=2,3,... 

1(x) = max l"g(t1x) + h(t0xi] L 1 ^ J 

1 2 
t^ o,t2? 0 

Applying Theorem 7 and taking into account that g'(0) and 
h'(0) are non-negative we get 
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f U O ) = max rt.g'iO) + tph' (0)1 = max [g'(0) ,h'!(0) ,0] = 
1 t 1 +t 24 1 1 1 J 

oft2> 0 

= max [jg'( 0), h'( 0)] 

f^(0) = max [tlg' (0) + t2h' (0) + (a^+btg+l-^-tgJf^O)] = 

t^» 0,t2» 0 

= max [g'(0) + af^(O), h' (0) + bf^(O), fj,(o)J = 

= max [g'(0) + af^(O), h' (0) + bf^(O)] 

and generally 

f Q(0) i maxfg' (0) + a f ^ C O ) , K (0) + b f ^ C O ) ] . 

By Theorem 5 we have 

11» ^ ( O ) . ^ ^ , ^ ) . 

Note that also in this case the assumption (*) of 'Theo-
rem 7 holds. 
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