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Abstract: In this work, we construct traveling wave solu-
tions of (1+1) - dimensional Ito integro-differential equa-
tion via three analytical modified mathematical methods.
We have also compared our achieved results with other
different articles. Portrayed of some 2D and 3D figures
viaMathematica software demonstrates to understand the
physical phenomena of the nonlinear wave model. These
methods are powerful mathematical tools for obtaining
exact solutions of nonlinear evolution equations and can
be also applied to non-integrable equations as well as in-
tegrable ones. Hence worked-out results ascertained sug-
gested that employed techniques best to deal NLEEs.

Keywords: Integro-differential Ito equation, General-
ized direct algebraic method, Extended simple equation
method, Modified F-expansion method

1 Introduction
The world around us is basically nonlinear. In this regards
nonlinear partial differential equations (NPDEs) are main
significance to describe the complex physical phenomena;
for example, nonlinear wave propagation can occur in the
scopes of elasticity theory, fluid dynamics, plasmaphysics,
and nonlinear optics.The exploration of analytical, exact
solutions for NPDEs has become quite prominent due to
the recently great advances gained in the computational
techniques.Several efficient and powerful methods can be
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applied for finding the analytical solutions such as; Ricatti
Bernoulli’s sub-ODE method [1, 2], Modified extended di-
rect algebraic method [3, 4, 6], the homogeneous balance
method, the modified simple equation method [7–9], aux-
iliary equation method [10], the modified extended map-
ping method [11–14], extended Jacobian elliptic function
expansion method, the modified extended tanh-function
method, the generalized Kudryashov method, the sine-
cosine method [15], the Hirota’s bilinear method [16], Dar-
boux transformation [17, 18], semi-inverse variational prin-
ciple [19], the hyperbolic tangent expansion method [20],
the inverse scattering transform [21], the tanhsechmethod
and the extended tanhcoth method, the first integral
method [22], the symmetry method, the soliton ansatz
methods [23–35, 38].

Article purpose is to investigate exact solutions of
integro-differential Ito equation by employing the three
analytical modified mathematical methods. The integro-
differential Ito equation having fruitful applications in
mathematical physics.In previous authors [39, 40] applied
generalized Kudryashov and (G′/G, 1/G) methods respec-
tively for exact travelingwave solutions for Eq. (10). But the
aspire our presented work is that, we give concentration
for finding analytical solutions of Eq. (10) by generalized
direct algebraic, extended simple equation andmodified F-
expansion methods. The derived solutions are productive
tools for solving numerous problems in the field applied
sciences.

The reminant article arranged sections (2-5) as, De-
scription of proposed steps in 2, apply methods in 3. Re-
sults discussion in 4 and Summary in 5.

2 Description proposed methods:
Consider

P1 (v, vx , vt , vxx , vtt , vxt , ...) = 0, (1)

Let
v = V(ξ ), ξ = x − ωt, (2)
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Put (2) in (1),

P2
(︀
V , V ′, V ′′, ...

)︀
= 0, (3)

2.1 Generalized Direct Algebraic Method:

Let solution (3) has,

V =
n∑︁
i=0

AiΨ i +
−n∑︁
i=−1

B−iΨ i +
n∑︁
i=2

CiΨ i−2Ψ ′ (4)

+
n∑︁
i=1

Di
(︂
Ψ ′

Ψ

)︂i
Suppose Ψ satisfies following,

Ψ ′ =
√︀
r1Ψ2 + r2Ψ3 + r3Ψ4 (5)

where r1, r2, r3 are arbitrary constants.
Put (4)with (5) in (3), attained systemof collection con-

taining ω, r1, r2 and r3. Putting these values with solution
Ψ in (4), achieved the require destination of (1).

2.2 Extended Simple Equation Method

Let (3) has solution,

V =
n∑︁

i=−n
Ai𝛹 i (6)

Let 𝛹 gratify,

𝛹 ′ = l0 + l1𝛹 + l2𝛹2 + l3𝛹3 (7)

Substituting (6) along with (7) into (3). After solving, trans-
fer obtained values of the parameters and solution of 𝛹
into (7). We obtained solution of (1).

2.3 Modified F-expansion Method:

Step 1: Let us suppose that (3) has solution as:

V = a0 +
n∑︁
i=1

aiF i(ξ ) +
n∑︁
i=1

biF−i(ξ ) (8)

Let F gratifies,

F′ = A + BF + CF2. (9)

Step 2: Put (10) along (11) in (3), solving for require param-
eters values.

Step 3: Selective values C, B, A and F from Table 1 [41]
and substitute ai bi into Eq. (5), completed for so-
lution (1).

3 Applications:

3.1 Application of Generalized Direct
Algebraic Method:

Consider integro-differential Ito equation [39, 40],

utt + uxxxt + 3 (2uxut + uuxt) + 3uxx∂−1x (ut) = 0. (10)

Let
u(x, t) = vx(x, t), ξ = x − ωt, (11)

Putting (11) in (10),twice integrate and integration con-
stant, yields

ωv′ − v′′′ − 3
(︀
v′
)︀2 = 0 (12)

Let (12) has solution,

v(ξ ) = A0 + A1Ψ + B1Ψ + D1
Ψ ′

Ψ (13)

Put (13) along with (5) in (12), after solving, we have

A1 = ±
√r3, D1 = −1, B1 = 0, ω = r1 (14)

Put (14) in (13), we have

Case - I

v1 = A0 −
√r3

(︀
r1
(︀
ϵ coth

(︀1
2 (ξ + ξ0)

√r1
)︀
+ 1
)︀)︀

r2
(15)

−
r3/21 ϵcsch2

(︀1
2 (ξ + ξ0)

√r1
)︀

(2r2)(−r1(ϵ coth( 12 (ξ+ξ0)
√r1)+1))

r2

,

r1 > 0, r22 − 4r1r3 = 0.

u1 =
(ξ + ξ0) r1ϵ2csch4

(︀1
2 (ξ + ξ0)

√r1
)︀

4
(︀
ϵ coth

(︀1
2 (ξ + ξ0)

√r1
)︀
+ 1
)︀2 (16)

+ (ξ + ξ0)
√r3r3/21 ϵcsch2

(︀1
2 (ξ + ξ0)

√r1
)︀

2r2
−

(ξ + ξ0) r1ϵ coth
(︀1
2 (ξ + ξ0)

√r1
)︀
csch2

(︀1
2 (ξ + ξ0)

√r1
)︀

2
(︀
ϵ coth

(︀1
2 (ξ + ξ0)

√r1
)︀
+ 1
)︀ ,

r1 > 0, r22 − 4r1r3 = 0.

Case - II

v2 = (17)

−

√︁
r1
r3

(︂√r1ϵ cosh((ξ+ξ0)√r1)
η+cosh((ξ+ξ0)√r1) −

√r1ϵ sinh2((ξ+ξ0)√r1)
(η+cosh((ξ+ξ0)√r1))2

)︂
2
(︁√︁

r1
4r3

(︁
ϵ sinh((ξ+ξ0)√r1)
η+cosh((ξ+ξ0)√r1) + 1

)︁)︁
+ A0

−
√︂
r1
4

(︂
ϵ sinh ((ξ + ξ0)

√r1)
η + cosh ((ξ + ξ0)

√r1)
+ 1
)︂
,
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r1 > 0, r3 > 0, r2 =
√︀
4r1r3

u2 =
(︃√r1ϵ cosh ((ξ + ξ0)

√r1)
η + cosh ((ξ + ξ0)

√r1)
(18)

−
√r1ϵ sinh2 ((ξ + ξ0)

√r1)
(η + cosh ((ξ + ξ0)

√r1))2
(ξ + ξ0)

√r1ϵ cosh (
√r1x)

η + cosh (
√r1)

− (ξ + ξ0)
√r1ϵ sinh2 (

√r1)
(η + cosh (

√r1))2

)︃

/
(︂
ϵ sinh ((ξ + ξ0)

√r1)
η + cosh (

√r1)
+ 1
)︂2

− 1
2
√
r1

(︃
(ξ + ξ0)

√r1ϵ cosh (
√r1)

η + cosh ((ξ + ξ0)
√r1)

− (ξ + ξ0)
√r1ϵ sinh2 (

√r1)
(η + cosh ((ξ + ξ0)

√r1))2

)︃

− 1
ϵ sinh(√r1x)
η+cosh(√r1) + 1

2 (ξ + ξ0) r1ϵ sinh3 (
√r1)

(η + cosh ((ξ + ξ0)
√r1)) 3

+ r1ϵ sinh (
√r1)

η + cosh (
√r1)

− 3 (ξ + ξ0) r1ϵ sinh ((ξ + ξ0)
√r1) cosh (

√r1)
(η + cosh (

√r1))2
,

r1 > 0, r3 > 0, r2 =
√︀
4r1r3

Case - III

v3 = −
r1

(︃
√r1ϵ cosh((ξ+ξ0)√r1)

η
√
p2+1+cosh((ξ+ξ0)√r1)

r2
(︂
r1
(︂

ϵ(p+sinh((ξ+ξ0)√r1))
η
√
p2+1+cosh((ξ+ξ0)√r1)

+1
)︂)︂

r2

(19)

−

√r1ϵ sinh((ξ+ξ0)√r1)(p+sinh((ξ+ξ0)√r1))(︁
η
√
p2+1+cosh((ξ+ξ0)√r1)

)︁2

)︃
r2
(︂
r1
(︂

ϵ(p+sinh((ξ+ξ0)√r1))
η
√
p2+1+cosh((ξ+ξ0)√r1)

+1
)︂)︂

r2

+

A0 +
r1
√r3

(︂
ϵ(p+sinh((ξ+ξ0)√r1))

η
√
p2+1+cosh((ξ+ξ0)√r1)

+ 1
)︂

r2
,

r1 > 0

u3 =
r1
√r3

(︃
(ξ+ξ0)

√r1ϵ cosh((ξ+ξ0)√r1)
η
√
p2+1+cosh((ξ+ξ0)√r1)
r2

(20)

−

(ξ+ξ0)
√r1ϵ sinh((ξ+ξ0)√r1)(p+sinh((ξ+ξ0)√r1))(︁

η
√
p2+1+cosh((ξ+ξ0)√r1)

)︁2

)︃
r2

+ (ξ + ξ0) r1ϵ sinh
(︁
(ξ + ξ0)

√
r1
)︁(︁
η
√︀
p2 + 1 cosh ((ξ

+ξ0)
√
r1x
)︀
− p sinh

(︀
(ξ + ξ0)

√
r1
)︀
+ 1
)︁

/
(︁
η
√︀
p2 + 1 + cosh

(︀
(ξ + ξ0)

√
r1
)︀)︁2 (︁

η
√︀
p2 + 1

+ ϵ
(︀
p + sinh

(︀
(ξ + ξ0)

√
r1
)︀)︀

+ cosh
(︀
(ξ + ξ0)

√
r1
)︀)︁

√
r1
(︀√
r1ϵ cosh

(︀
(ξ + ξ0)

√
r1
)︀
+
√
r1 sinh

(︀√
r1
)︀)︀(︁

η
√︀
p2 + 1ϵ cosh

(︀
(ξ + ξ0)

√
r1
)︀

− ϵp sinh
(︀
(ξ + ξ0)

√
r1
)︀
+ ϵ
)︁

/
(︁
η
√︀
p2 + 1 + cosh

(︀
(ξ + ξ0)

√
r1x
)︀)︁(︁

η
√︀
p2 + 1

+ ϵ
(︀
p + sinh

(︀
(ξ + ξ0)

√
r1
)︀)︀

+ cosh
(︀
(ξ + ξ0)

√
r1
)︀)︁2

+
√
r1ϵ
(︁
η (ξ + ξ0)

√︀
p2 + 1

√
r1 sinh

(︀
(ξ + ξ0)

√
r1
)︀

− (ξ + ξ0) p
√
r1 cosh

(︀√
r1
)︀)︁
/
(︁
η
√︀
p2 + 1 + cosh

(︀√
r1
)︀)︁

η
√︀
p2 + 1 + ϵ

(︀
p + sinh

(︀
(ξ + ξ0)

√
r1
)︀)︀

+ cosh
(︀
(ξ + ξ0)

√
r1
)︀)︀
, r1 > 0

3.2 Applications of Extended Simple
Equation Method:

Let (12) has solution,

v = A1Ψ + A−1Ψ + A0 (21)

Put (21) in (12) alongwith (7) and after solving obained sys-
tem of equations, we have

Case I: l3 = 0,

Family - I

A1 = −2l2, A−1 = 0, ω = l21 − 4l0l2 (22)

Substitute (22) in (21) with (7), then solution of Eq. (10)
achieved,

v4 = A0 (23)

+

⎛⎝l1 −√︁4l0l2 − l21 tan(

√︁
4l0l2 − l21

2 (ξ + ξ0))

⎞⎠,

4l0l2 > l21

u4 = −
1
2 (4l0l2 (24)

−l21
)︁
(ξ + ξ0) sec2

(︂
1
2

√︁
4l0l2 − l21 (ξ + ξ0)

)︂
, 4l0l2 > l21

Family - II

A1 = 0, A−1 = 2l0, ω = l21 − 4l0l2 (25)
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Figure 1: Exact traveling waves of solution (20).

Put (25) in (21),

v5 =A0 (26)

− 4l2l0(︁
l1 −

√︁
4l2l0 − l21 tan

(︁
1
2

√︁
4l2l0 − l21(ξ + ξ0)

)︁)︁ ,
4l0l2 > l21.

u5 =
2l0 l2(4l0 l2−l21)(ξ+ξ0) sec2

(︁
1
2

√
4l0 l2−l21(ξ+ξ0)

)︁
(︁
l1−

√
4l0 l2−l21 tan

(︁
1
2

√
4l0 l2−l21(ξ+ξ0)

)︁)︁2 , (27)

4l0l2 > l21

Case II: l0 = l3 = 0,

ω = l21, A1 = −2l2, A−1 = 0 (28)

Put (28) in (21),

v6 =
−2l2l1el1(ξ+ξ0)

(1 − l2el1(ξ+ξ0))
, l1 > 0. (29)

u6 = −
2l21l22 (ξ + ξ0) el1(ξ+ξ0)(︀

1 − l2el1(ξ+ξ0)
)︀2 , l1 > 0. (30)

Figure 2: Traveling waves of solution of (30).

v7 =
2l2l1el1(ξ+ξ0)

(1 + l2el1(ξ+ξ0))
, l1 < 0. (31)

u7 = −
2l21l22 (ξ + ξ0) el1(ξ+ξ0)(︀

l2el1(ξ+ξ0) + 1
)︀2 , l1 < 0. (32)

Case III: l1 = l3 = 0,

Family - I

ω = −4l0l2, A1 = −2l2, A−1 = 0 (33)

Put (33) in (21),

v8 = A0 − 2
√︀
l0l2

(︁
tan
√︀
l0l2(ξ + ξ0)

)︁
, l2l0 > 0. (34)

u8 = −2l0l2 (ξ + ξ0) sec2
(︁√︀

l0l2 (ξ + ξ0)
)︁
, (35)

l2l0 > 0.

v9 = A0 + 2
√︀
−l0l2

(︁
tanh

√︀
−l0l2(ξ + ξ0)

)︁
, (36)

l2l0 < 0.



28 | A. Seadawy et al.

Figure 3: Traveling waves of solution (32).

u9 = −2l0l2 (ξ + ξ0) sech2
(︁√︀
−l0l2 (ξ + ξ0)

)︁
, (37)

l2l0 < 0.

Family - II

ω = −4l0l2, A1 = 0, A−1 = 2l0 (38)

Put (38) in (21),

v10 = A0 −
2l0l2√︀

l0l2
(︁
tan
√︀
l0l2(ξ + ξ0)

)︁ , l0l2 > 0, (39)

u10 = −2l0l2 (ξ + ξ0) csc2
(︁√︀

l0l2 (ξ + ξ0)
)︁
, (40)

l0l2 > 0,

v11 = A0 +
2l0l2(︁√︀

−l0l2 tanh
√︀
−l0l2(ξ + ξ0)

)︁ , (41)

l0l2 < 0,

u11 = 2l0l2 (ξ + ξ0) csch2
(︁√︀
−l0l2 (ξ + ξ0)

)︁
, (42)

l0l2 < 0,

Family - III

ω = −16l0l2, A1 = −2l2, A−1 = 2l0 (43)

Put (43) in (21),

v12 = A0 − 2
√︀
l0l2

(︁
tan
√︀
l0l2(ξ + ξ0)

)︁
(44)

− 2l0l2√︀
l0l2

(︁
tan
√︀
l0l2(ξ + ξ0)

)︁ , l0l2 > 0.

u12 = −2l0l2 (ξ + ξ0) sec2
(︁√︀

l0l2 (ξ + ξ0)
)︁

(45)

− 2l0l2 (ξ + ξ0) csc2
(︁√︀

l0l2 (ξ + ξ0)
)︁
, l0l2 > 0.

v13 = A0 + 2
√︀
−l0l2

(︁
tanh

√︀
−l0l2(ξ + ξ0)

)︁
(46)

+ 2l0l2(︁√︀
−l0l2 tanh

√︀
−l0l2(ξ + ξ0)

)︁ , l0l2 < 0.

u13 = −2l0l2 (ξ + ξ0) sech2
(︁√︀
−l0l2 (ξ + ξ0)

)︁
(47)

+ 2l0l2 (ξ + ξ0) csch2
(︁√︀
−l0l2 (ξ + ξ0)

)︁
, l0l2 < 0.

3.3 Applications of Modified F-expansion
Method:

Let solution of (12) is;

v = a0 + a1F +
b1
F (48)

Substitute (48) in (12) with (11),
For A = 0, B = 1, C = −1, we have,

ω = 1, a1 = 2, b1 = 0 (49)

Put (49) in (48),

v14 = a0 +
(︂
1 + tanh

(︂
1
2 ξ
)︂)︂

(50)

u14 =
1
2 ξsech

2
(︂
ξ
2

)︂
(51)

When A = 0, B = −1, C = 1, then we have,

ω = 1, a1 = −2, b1 = 0 (52)

Substitute (52) into (48),

v15 = a0 −
(︂
1 − coth(12 ξ )

)︂
(53)

u15 =
1
2 ξcsch

2
(︂
ξ
2

)︂
(54)

For A = 1
2 , B = 0, C = −12 , then we have,
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Figure 4: Traveling waves of solution of (42).

Family - I
ω = 1, a1 = 0, b1 = 1 (55)

Put (55) in (48),

v16 = a0 +
(︂

1
coth(ξ ) ± csch(ξ )

)︂
(56)

u16 = −
−ξcsch2(ξ ) − ξ coth(ξ )csch(ξ )

(coth(ξ ) + csch(ξ ))2 (57)

Family - II

ω = −1, a1 = 1, b1 = 0 (58)

Put (58) in (48),

v17 = a0 +
(︀
±csch(ξ ) + coth(ξ )

)︀
(59)

u17 = −ξcsch2(ξ ) − ξ coth(ξ )csch(ξ ) (60)

Family - III

ω = −4, a1 = 1, b1 = −1 (61)

Figure 5: Traveling waves of solution (102).

Put (61) in (48),

v18 = a0 +
(︂

1
(±csch(ξ ) + coth(ξ ))

)︂
(62)

+ (±csch(ξ ) + coth(ξ ))

u18 = −ξcsch2(ξ ) −
−ξcsch2(ξ ) − ξ coth(ξ )csch(ξ )

(coth(ξ ) + csch(ξ ))2 (63)

− ξ coth(ξ )csch(ξ )

For C = −1, B = 0, A = 1,

Family - I
ω = 4, a1 = 0, b1 = 2 (64)

Put (64) in (48),

v19 = a0 + 2
(︂

1
tanh(ξ )

)︂
, or a0 + 2

(︂
1

coth(ξ )

)︂
(65)

u19 = −ξcsch2(ξ ), or ξsech2(ξ ) (66)

Family - II
ω = 4, a1 = 2, b1 = 0 (67)
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Put (67) in (48),

v20(ξ ) = a0 + 2
(︀
tanh(ξ )

)︀
or a0 +

(︀
coth(ξ )

)︀
(68)

u20(ξ ) = ξsech2(ξ ) or − ξcsch2(ξ ) (69)

Family - III

ω = 16, a1 = 2, b1 = 2 (70)

Put (70) in (29),

v21 = a0 + 2
(︂
tanh(ξ ) + 1

tanh(ξ )

)︂
, (71)

or a0 + 2
(︂
coth(ξ ) + 1

coth(ξ )

)︂

u21 = 2ξsech2(ξ ) − ξcsch2(ξ ), (72)
or 2ξsech2(ξ ) − ξcsch2(ξ )

When A = 1
2 , C = 1

2 , B = 0,

Family - I
ω = −1, a1 = −1, b1 = 0 (73)

Put (73) in (48),

v22 = a0 −
(︀
sec(ξ ) + tan(ξ )

)︀
(74)

u22 = ξ sec2(ξ ) + ξ tan(ξ ) sec(ξ ) (75)

Family - II

ω = −1, a1 = 0, b1 = 1 (76)

Put (76) in (48),

v23 = a0 +
(︂

1
tan(ξ ) + sec(ξ )

)︂
(77)

u23 = −
ξ sec2(ξ ) + ξ tan(ξ ) sec(ξ )

(tan(ξ ) + sec(ξ ))2 (78)

Family - III

ω = −4, a1 = −1, b1 = 1 (79)

By putting Eq. (79) in (48),

v24 = a0 −
(︀
tan(ξ ) + sec(ξ )

)︀
+
(︂

1
tan(ξ ) + sec(ξ )

)︂
(80)

u24 = ξ sec2(ξ ) +
ξ sec2(ξ ) + ξ tan(ξ ) sec(ξ )

(tan(ξ ) + sec(ξ ))2 (81)

+ ξ tan(ξ ) sec(ξ )

A = −12 , B = 0, C = −12 ,

Family - I
ω = −1, a1 = 1, b1 = 0 (82)

Put (82) in (48),

v25 = a0 +
(︀
sec(ξ ) − tan(ξ )

)︀
(83)

u25 = ξ tan(ξ ) sec(ξ ) − ξ sec2(ξ ) (84)

Family - II

ω = −1, a1 = 0, b1 = −1 (85)

Put (85) in (48),

v26 = a0 −
(︂

1
tan(ξ ) − sec(ξ )

)︂
(86)

u26 =
ξ sec2(ξ ) − ξ tan(ξ ) sec(ξ )

(tan(ξ ) − sec(ξ ))2 (87)

Family - III

ω = −4, a1 = 1, b1 = −1 (88)

Put (88) in (48),

v27 = a0 +
(︀
sec(ξ ) − tan(ξ )

)︀
− 3
2

(︂
1

tan(ξ ) − sec(ξ )

)︂
(89)

u27 = −ξ sec2(ξ ) −
ξ tan(ξ ) sec(ξ ) − ξ sec2(ξ )

(sec(ξ ) − tan(ξ ))2 (90)

− ξ tan(ξ ) sec(ξ )

C = A = −1, B = 0,

Family - I
ω = −4, a1 = 2, b1 = 0 (91)

Put (91) in (48),

v28 = a0 + 2
(︀
tan(ξ )

)︀
, or a0 + 2

(︀
cot(ξ )

)︀
(92)

u28 = 2ξ sec2(ξ ), or − 2ξ csc2(ξ ) (93)

Family - II

ω = −4, a1 = 0, b1 = −2 (94)

Put (94) in (48),

v29 = a0 − 2
(︂

1
(tan(ξ )

)︂
, or a0 − 2

(︂
1

(cot(ξ )

)︂
(95)

u29 = 2ξ csc2(ξx), or − 2ξ sec2(ξ ) (96)
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Family - III

ω = −16, a1 = 2, b1 = −2 (97)

Put (97) in (48),

v30(x, t) = a0 + 2
(︂

1
(tan(ξ )

)︂
− 2
(︀
tan(ξ )

)︀
(98)

u30(x, t) = −2ξ csc2(ξ ) − 2ξ sec2(ξ ) (99)

When A = 0, B = 1, C3 ≠ 0, then we have,

ω = 1, a1 = −2C, b1 = 0 (100)

Put (100) in (48),

v31 = a0 + 2C
(︂

1
Cξ + ϵ)

)︂
(101)

u31 = −
2C2ξ

(Cξ + ϵ)2 (102)

When B = 0, C = 0, then we have,

a1 =
ω
3A , b1 = 0 (103)

Put (103) in (48),

v32 =
ωξ
3 (104)

u32 =
1
3(ωξ ) (105)

When A ≠ 0, B ≠ 0, C = 0, then we have,

ω = B2, a1 = 0, b1 = 2A (106)

Put (106) in (48),

v33 = a0 + 2A
(︂

B
(exp(Bξ ) − A)

)︂
(107)

u33 = −
2AB2ξeBξ(︀
eBξ − A

)︀2 (108)

4 Results and Discussion
Different researchers used distinct schemes for the deter-
mination of solutions of integro-differential Ito model [39,
40]. But here we have investigated serval types solutions
nonlinear Eq. (12) via three analytical modified mathe-
matical mathematical methods. With different values of
the parameters in Eq. (4), Eq. (6) and Eq. (6) respectively

obtained many different types solutions. However, some
our investigated results are likely similar to with other re-
searchers results in [39, 40]. Our solution (30) and(32) are
approximate similar to the solutions (18) and (21) in [39].
Solution (18) and (20) likely similar to (3.17) and (3.18)
in [40].

Figure 1-5 are plotted after assigning these particular
values to the parameters such that, solution u3(x, t) at
η = 1, p = −1, r1 = 0.9, r2 = 2 r3 = 5, ξ0 = 0.07, ϵ = −1,
ω = r1 and u6(x, t) at 4l0 = 1, l1 = 0.9, l2 = 1 ϵ = 0.5 and
u7(x, t) at l0 = 1, l1 = −0.3, l2 = 1, ϵ = 0.5, ω = l21 and
u11(x, t) l0 = 0.05, l2 = −0.5, ϵ = 0.5, ω = −4l0l2 and u31
at B = 6, ω = 1, ϵ = 1 respectively. From results discus-
sion and graphical representations of u3, u6, u7, u11 u31
by assigning the particular values with the assistance of
Mathematica sofware, we have found that our techniques
provide a rich plate form as a mathematical tools for solv-
ing nonlinear wave problem in Mathematics, physics and
engineerings.

5 Conclusion
In thiswork, three analyticalmodifiedmathematicalmeth-
ods so called generalized direct algebraic, extended sim-
plest equation and modified F-expansion methods are
serve for the construction of the wave solutions of integro-
differential Ito equation, having important applications in
mathematical physics. The investigated results are more
general and provide a basic ground for solving many non-
linear problems.
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