We believe that in the long-term the relation between Mathematics and Technologies is symbiotic and reflexive. In the hindsight perspective of history, the contemporary run of this relation will be seen as era-defining.

Mathematics of Quantum and Nano Technologies is intended for dissemination of innovative mathematical ideas related to nanotechnology, quantum sciences and quantum engineering. The targeted areas of applicability include:

- Nanotechnology, especially nano-scale electronics;
- quantum metamaterials;
- natural quantum systems;
- qualitative properties of quantum states and observables;
- harmonic analysis of signals detected in quantum environments;
- conceptual devices exploiting quantum effects.

All types of mathematical methods are admissible as long as sufficient evidence is given of relevance to quantum sciences or technologies. The relevance condition is understood broadly and does not hinge on demonstrating immediate utility in a concrete application.

Why submit and read

The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with critical peer review, extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and quick publication after acceptance.

The journal is free for both readers and authors - there are no submission or publication fees.
Thanks to Open Access, all articles are freely available to the academic community worldwide without any restrictions, there are more liberal policies on copyrights (authors retain copyright) and on self-archiving (no embargo periods).

Mathematics of Quantum and Nano Technologies is an interdisciplinary, fully peer-reviewed open access journal devoted to the publication of high quality research involving mathematical methods used in quantum sciences, nanotechnology and quantum engineering.

Editor-in-Chief
Artur Sowa, University of Saskatchewan, Canada

Managing Journal Editor
Alex Povitsky, University of Akron, United States

Editorial Board
Luis L. Bonilla, G. Millan Institute in Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, Spain
Horia Cornean, Department of Mathematical Sciences, Aalborg University, Denmark
Ming Dao, Nanomechanics Laboratory, Massachusetts Institute of Technology, United States
Eugenie Hunsicker, Department of Mathematical Sciences, Loughborough University, United Kingdom
Angsar Jungel, Institute for Analysis and Scientific Computing, Technical University of Vienna, Austria
Efthimios Kaxiras, School of Engineering and Applied Sciences, Harvard University, United States
Andrei Khrennikov, School of Computer Science, Physics and Mathematics, Linnaeus University, Sweden
Gerhard Klimeck, Nanoelectronic Modeling Group, College of Engineering, Purdue University, United States
Florian Mehats, Mathematics Research Institute (IRMAR), University of Rennes, France
Roderick Melnik, The MS2Discovery Interdisciplinary Research Institute, M2NET Laboratory, Wilfrid Laurier University, Waterloo, Canada
Zoran Miskovic, Institute of Nanotechnology, University of Waterloo, Canada
Sophie Schirmer, College of Science, Swansea University, United Kingdom
Dragica Vasileska, Global Institute of Sustainability, School of Electrical, Computer and Energy Engineering, Arizona State University, United States
Qi Wang, Department of Mathematics and NanoCenter, University of South Carolina, United States
Alexandre Zagoskin, Loughborough University, United Kingdom

Publisher
DE GRUYTER Poland
Bogumila Zuga 32A Str.
01-811 Warsaw, Poland
T: +48 22 701 50 15

degruyter.com