Barbara Baumeister, Thomas Gobet, Kieran Roberts, Patrick Wegener
June 15, 2016

### Abstract

We provide a necessary and sufficient condition on an element of a finite Coxeter group to ensure the transitivity of the Hurwitz action on its set of reduced decompositions into products of reflections. We show that this action is transitive if and only if the element is a parabolic quasi-Coxeter element. We call an element of the Coxeter group parabolic quasi-Coxeter element if it has a factorization into a product of reflections that generate a parabolic subgroup. We give an unusual definition of a parabolic subgroup that we show to be equivalent to the classical one for finite Coxeter groups.