De Gruyter De Gruyter
EN
English Deutsch
EUR € GBP £ USD $
0

Your purchase has been completed. Your documents are now available to view.

Changing the currency will empty your shopping cart.

Journal of Integrative Bioinformatics

Journal of Integrative Bioinformatics

Volume 12 Issue 1

  • Contents
  • Journal Overview
Unable to retrieve citations for this document
Retrieving citations for document...

GITIRBio: A Semantic and Distributed Service Oriented- Architecture for Bioinformatics Pipeline

Luis F. Castillo, Germán López-Gartner, Gustavo A. Isaza, Mariana Sánchez, Jeferson Arango, Daniel Agudelo-Valencia, Sergio Castaño October 18, 2016 Page range: 1-15
More Cite
Open Access PDF PDF

Abstract

The need to process large quantities of data generated from genomic sequencing has resulted in a difficult task for life scientists who are not familiar with the use of command-line operations or developments in high performance computing and parallelization. This knowledge gap, along with unfamiliarity with necessary processes, can hinder the execution of data processing tasks. Furthermore, many of the commonly used bioinformatics tools for the scientific community are presented as isolated, unrelated entities that do not provide an integrated, guided, and assisted interaction with the scheduling facilities of computational resources or distribution, processing and mapping with runtime analysis. This paper presents the first approximation of a Web Services platform-based architecture (GITIRBio) that acts as a distributed front-end system for autonomous and assisted processing of parallel bioinformatics pipelines that has been validated using multiple sequences. Additionally, this platform allows integration with semantic repositories of genes for search annotations. GITIRBio is available at: http://c-head.ucaldas.edu.co:8080/gitirbio

A web application for automatic prediction of gene translation elongation efficiency

Vladimir S. Sokolov, Bulat S. Zuraev, Sergei A. Lashin, Yury G. Matushkin October 18, 2016 Page range: 16-23
More Cite
Open Access PDF PDF

Abstract

Expression efficiency is one of the major characteristics describing genes in various modern investigations. Expression efficiency of genes is regulated at various stages: transcription, translation, posttranslational protein modification and others. In this study, a special EloE (Elongation Efficiency) web application is described. The EloE sorts the organism’s genes in a descend order on their theoretical rate of the elongation stage of translation based on the analysis of their nucleotide sequences. Obtained theoretical data have a significant correlation with available experimental data of gene expression in various organisms. In addition, the program identifies preferential codons in organism’s genes and defines distribution of potential secondary structures energy in 5´ and 3´ regions of mRNA. The EloE can be useful in preliminary estimation of translation elongation efficiency for genes for which experimental data are not available yet. Some results can be used, for instance, in other programs modeling artificial genetic structures in genetically engineered experiments. The EloE web application is available at http://www-bionet.sscc.ru:7780/EloE.

Shared Bioinformatics Databases within the Unipro UGENE Platform

Ivan V. Protsyuk, German A. Grekhov, Alexey V. Tiunov, Mikhail Yu. Fursov October 18, 2016 Page range: 24-34
More Cite
Open Access PDF PDF

Abstract

Unipro UGENE is an open-source bioinformatics toolkit that integrates popular tools along with original instruments for molecular biologists within a unified user interface. Nowadays, most bioinformatics desktop applications, including UGENE, make use of a local data model while processing different types of data. Such an approach causes an inconvenience for scientists working cooperatively and relying on the same data. This refers to the need of making multiple copies of certain files for every workplace and maintaining synchronization between them in case of modifications. Therefore, we focused on delivering a collaborative work into the UGENE user experience. Currently, several UGENE installations can be connected to a designated shared database and users can interact with it simultaneously. Such databases can be created by UGENE users and be used at their discretion. Objects of each data type, supported by UGENE such as sequences, annotations, multiple alignments, etc., can now be easily imported from or exported to a remote storage. One of the main advantages of this system, compared to existing ones, is the almost simultaneous access of client applications to shared data regardless of their volume. Moreover, the system is capable of storing millions of objects. The storage itself is a regular database server so even an inexpert user is able to deploy it. Thus, UGENE may provide access to shared data for users located, for example, in the same laboratory or institution. UGENE is available at: http://ugene.net/download.html.

Online High-throughput Mutagenesis Designer Using Scoring Matrix of Sequence-specific Endonucleases

Dayong Guo, Xiaojing Li, Pan Zhu, Yanrong Feng, Juan Yang, Zhihong Zheng, Wei Yang, Enuo Zhang, Shenglai Zhou, Hongyu Wang October 18, 2016 Page range: 35-48
More Cite
Open Access PDF PDF

Abstract

CRISPR Cas9 and other sequence-specific endonucleases are fundamental genome editors supporting gene knockout and gene therapy. A speedy and accurate computational allele designer is required for a high through-put gene mutagenesis pipeline using these new techniques. An automatic system, Cas9 online designer (COD), was created to screen Cas9 targets and off-targets, as well as to provide gene knockout and genotyping strategies. A gene knockout rat model was successfully created and genotyped under the direction of this online system confirming its ability to predict real targets and off-targets. Gene knockout strategies to mutate 72 rat cytochrome P450 genes were designed instantly by the system to demonstrate its high-throughput efficiency. Also, the system used an off-target scoring matrix which can be applied to any sequence-specific genome editing tools besides Cas9. The COD system (http://cas9.wicp.net) has established a speedy, accurate, flexible and high through-put computational gene knockout pipeline supporting the sequence-specific endonuclease induced mutagenesis.

About this journal

Objective
Journal of Integrative Bioinformatics (JIB) is an international open access journal publishing original peer-reviewed research articles in all aspects of integrative bioinformatics.

Molecular biology produces huge amounts of data in the post-genomic era. This includes data describing metabolic mechanisms and pathways, structural genomic organization, patterns of regulatory regions; proteomics, transcriptomics, and metabolomics. On the one hand, analysis of this data uses essentially the methods and concepts of computer science; on the other hand, the range of biological tasks solved by researchers determines the range and scope of the data. Currently, there are about 1,000 database systems and various analytical tools available via the Internet which are directed at solving various biological tasks.

The challenge we have is to integrate these list-parts and relationships from genomics and proteomics at novel levels of understanding. Integrative Bioinformatics is a new area of research using the tools of computer science and electronic infrastructure applied to Biotechnology. These tools will also represent the backbone of the concept of a virtual cell.

Topics

Software applications/tools and databases covering the following topics:
  • Molecular Databases, Information Systems and Data Warehouses
  • Integration of Data, Methods and Tools
  • Metabolic and Regulatory Network Modeling and Simulation
  • Signal Pathways and Cell Control
  • Network Analysis
  • Medical Informatics, Biomedicine and Biotechnology
  • Integrative Approaches for Drug Design
  • Integrative Data and Text Mining Approaches
  • Integrative, whole cell and molecular modeling
  • Visualization and animation

Review papers are also welcome with regard to JIB.tools.

Article formats
Research articles, Review papers, Workshop contributions (if peer-reviewed)

Article processing charges (APCs)
Each unsolicited article, which is accepted for publication in the Journal of Integrative Bioinformatics is subject to an Article Processing Charge of 1,000€.
The Open Access publication of invited articles for Special Issues is sponsored by the editors.

Inquiries concerning APCs should be addressed to the Editorial Office at De Gruyter (see contact details below).

> Information on submission process

Open Access
Imprints and Publisher Partners
  • Birkhäuser
  • De Gruyter Akademie Forschung
  • De Gruyter Mouton
  • De Gruyter Oldenbourg
  • De Gruyter Saur
  • Deutscher Kunstverlag
  • Publisher Partner
Products & services
  • Subject Areas
  • For Authors
  • For Librarians
  • For Societies
Contact and help
  • Service Center
  • Contact
  • Career
  • Imprint
  • Help/FAQ
  • Contact
  • Privacy Policy
  • Terms and Conditions
  • Imprint
© Walter de Gruyter GmbH 2021