De Gruyter De Gruyter
EN
English Deutsch
EUR € GBP £ USD $
0

Your purchase has been completed. Your documents are now available to view.

Changing the currency will empty your shopping cart.

Journal of Integrative Bioinformatics

Journal of Integrative Bioinformatics

Volume 9 Issue 1

  • Contents
  • Journal Overview
Unable to retrieve citations for this document
Retrieving citations for document...

On the Importance of Mathematical Methods for Analysis of MALDI-Imaging Mass Spectrometry Data

Dennis Trede, Jan Hendrik Kobarg, Janina Oetjen, Herbert Thiele, Peter Maass, Theodore Alexandrov October 18, 2016 Page range: 1-11
More Cite
Open Access PDF PDF

Abstract

In the last decade, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS), also called as MALDI-imaging, has proven its potential in proteomics and was successfully applied to various types of biomedical problems, in particular to histopathological label-free analysis of tissue sections. In histopathology, MALDI-imaging is used as a general analytic tool revealing the functional proteomic structure of tissue sections, and as a discovery tool for detecting new biomarkers discriminating a region annotated by an experienced histologist, in particular, for cancer studies. A typical MALDI-imaging data set contains 10 8 to 10 9 intensity values occupying more than 1 GB. Analysis and interpretation of such huge amount of data is a mathematically, statistically and computationally challenging problem. In this paper we overview some computational methods for analysis of MALDI-imaging data sets. We discuss the importance of data preprocessing, which typically includes normalization, baseline removal and peak picking, and hightlight the importance of image denoising when visualizing IMS data.

UBioLab: a web-LABoratory for Ubiquitous in-silico experiments

E. Bartocci, M. R. Di Berardini, E. Merelli, L. Vito October 18, 2016 Page range: 12-31
More Cite
Open Access PDF PDF

Abstract

The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists -for what concerns their management and visualization- and for bioinformaticians -for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle -and possibly to handle in a transparent and uniform way- aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features -as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques- give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) “type” of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.

Coex-Rank: An approach incorporating co-expression information for combined analysis of microarray data

Jinlu Cai, Henry L. Keen, Curt D. Sigmund, Thomas L. Casavant October 18, 2016 Page range: 32-43
More Cite
Open Access PDF PDF

Abstract

Microarrays have been widely used to study differential gene expression at the genomic level. They can also provide genome-wide co-expression information. Biologically related datasets from independent studies are publicly available, which requires robust combined approaches for integration and validation. Previously, meta-analysis has been adopted to solve this problem. As an alternative to meta-analysis, for microarray data with high similarity in biological experimental design, a more direct combined approach is possible. Gene-level normalization across datasets is motivated by the different scale and distribution of data due to separate origins. However, there has been limited discussion about this point in the past. Here we describe a combined approach for microarray analysis, including gene-level normalization and Coex-Rank approach. After normalization, a linear modeling process is used to identify lists of differentially expressed genes. The Coex-Rank approach incorporates co-expression information into a rank-aggregation procedure. We applied this computational approach to our data, which illustrated an improvement in statistical power and a complementary advantage of the Coex-Rank approach from a biological perspective. Our combined approach for microarray data analysis (Coex-rank) is based on normalization, which is naturally driven. The Coex-rank process not only takes advantage of merging the power of multiple methods regarding normalization but also assists in the discovery of functional clusters of genes.

Predicting Genes Involved in Human Cancer Using Network Contextual Information

Hossein Rahmani, Hendrik Blockeel, Andreas Bender October 18, 2016 Page range: 44-71
More Cite
Open Access PDF PDF

Abstract

Protein-Protein Interaction (PPI) networks have been widely used for the task of predicting proteins involved in cancer. Previous research has shown that functional information about the protein for which a prediction is made, proximity to specific other proteins in the PPI network, as well as local network structure are informative features in this respect. In this work, we introduce two new types of input features, reflecting additional information: (1) Functional Context: the functions of proteins interacting with the target protein (rather than the protein itself); and (2) Structural Context: the relative position of the target protein with respect to specific other proteins selected according to a novel ANOVA (analysis of variance) based measure. We also introduce a selection strategy to pinpoint the most informative features. Results show that the proposed feature types and feature selection strategy yield informative features. A standard machine learning method (Naive Bayes) that uses the features proposed here outperforms the current state-of-the-art methods by more than 5% with respect to F-measure. In addition, manual inspection confirms the biological relevance of the top-ranked features.

About this journal

Objective
Journal of Integrative Bioinformatics (JIB) is an international open access journal publishing original peer-reviewed research articles in all aspects of integrative bioinformatics.

Molecular biology produces huge amounts of data in the post-genomic era. This includes data describing metabolic mechanisms and pathways, structural genomic organization, patterns of regulatory regions; proteomics, transcriptomics, and metabolomics. On the one hand, analysis of this data uses essentially the methods and concepts of computer science; on the other hand, the range of biological tasks solved by researchers determines the range and scope of the data. Currently, there are about 1,000 database systems and various analytical tools available via the Internet which are directed at solving various biological tasks.

The challenge we have is to integrate these list-parts and relationships from genomics and proteomics at novel levels of understanding. Integrative Bioinformatics is a new area of research using the tools of computer science and electronic infrastructure applied to Biotechnology. These tools will also represent the backbone of the concept of a virtual cell.

Topics

Software applications/tools and databases covering the following topics:
  • Molecular Databases, Information Systems and Data Warehouses
  • Integration of Data, Methods and Tools
  • Metabolic and Regulatory Network Modeling and Simulation
  • Signal Pathways and Cell Control
  • Network Analysis
  • Medical Informatics, Biomedicine and Biotechnology
  • Integrative Approaches for Drug Design
  • Integrative Data and Text Mining Approaches
  • Integrative, whole cell and molecular modeling
  • Visualization and animation

Review papers are also welcome with regard to JIB.tools.

Article formats
Research articles, Review papers, Workshop contributions (if peer-reviewed)

Article processing charges (APCs)
Each unsolicited article, which is accepted for publication in the Journal of Integrative Bioinformatics is subject to an Article Processing Charge of 1,000€.
The Open Access publication of invited articles for Special Issues is sponsored by the editors.

Inquiries concerning APCs should be addressed to the Editorial Office at De Gruyter (see contact details below).

> Information on submission process

Open Access
Imprints and Publisher Partners
  • Birkhäuser
  • De Gruyter Akademie Forschung
  • De Gruyter Mouton
  • De Gruyter Oldenbourg
  • De Gruyter Saur
  • Deutscher Kunstverlag
  • Publisher Partner
Products & services
  • Subject Areas
  • For Authors
  • For Librarians
  • For Societies
Contact and help
  • Service Center
  • Contact
  • Career
  • Imprint
  • Help/FAQ
  • Contact
  • Privacy Policy
  • Terms and Conditions
  • Imprint
© Walter de Gruyter GmbH 2021