Fedor Kazak, Leander Schleuß, Ralf Ossenbrink, Vesselin Michailov, Sabine Weiß
May 23, 2016
Abstract
Thin sheet metals from deep drawing steel DC04 are very often used in the production of car body and case parts. Quality improvement of sheet metal components by new constructive solutions (structuring) as well as adapted joining technology is going on. Structured sheet metals differ from each other by their high bending stiffness. At the same time, they show certain anisotropy due to the structure. Therefore a typical testing method of structured semi-finished parts (single sheet metals, sandwiches) is the bending test. The literature review revealed that in many studies no special demands on tests of structured materials were made. This concerns particularly the structure arrangement, structure direction and structure location of the specimen relative to the mandrel position during bending tests, i. e., the direction of the fixed load relative to the structure. The aim of this study was to determine the influence of the test specification on flexural behavior. In the present paper, honeycomb-structured sheet metals were examined using 3-point bending tests. Bending stiffness and lightweight potential were calculated with respect to the location of load application and compared for different structure arrangements, directions and locations. The influence of the anisotropy on flexural behavior of the honeycomb-patterned sheet metals was moderate.