### Abstract

In this paper, by means of the summation property to the Riordan array, we derive some identities involving generalized harmonic, hyperharmonic and special numbers. For example, for n ≥ 0,∑k=0nBkk!H(n.k,α)=αH(n+1,1,α)-H(n,1,α),\sum\limits_{k = 0}^n {{{{B_k}} \over {k!}}H\left( {n.k,\alpha } \right) = \alpha H\left( {n + 1,1,\alpha } \right) - H\left( {n,1,\alpha } \right)} ,and for n > r ≥ 0, ∑k=rn-1(-1)ks(k,r)r!αkk!Hn-k(α)=(-1)rH(n,r,α),\sum\limits_{k = r}^{n - 1} {{{\left( { - 1} \right)}^k}{{s\left( {k,r} \right)r!} \over {{\alpha ^k}k!}}{H_{n - k}}\left( \alpha \right) = {{\left( { - 1} \right)}^r}H\left( {n,r,\alpha } \right)} , where Bernoulli numbers Bn and Stirling numbers of the first kind s ( n , r ).