Unable to retrieve citations for this document

Retrieving citations for document...

Open Access
January 4, 2013
### Abstract

Given an open set Ω ⊂ R m and n > 1, we introduce the new spaces GB n V(Ω) of Generalized functions of bounded higher variation and GSB n V(Ω) of Generalized special functions of bounded higher variation that generalize, respectively, the space B n V introduced by Jerrard and Soner in [43] and the corresponding SB n V space studied by De Lellis in [24]. In this class of spaces, which allow as in [43] the description of singularities of codimension n , the distributional jacobian Ju need not have ﬁnite mass: roughly speaking, ﬁniteness of mass is not required for the (m−n)-dimensional part of Ju , but only ﬁniteness of size. In the space GSB n V we are able to provide compactness of sublevel sets and lower semicontinuity of Mumford-Shah type functionals, in the same spirit of the codimension 1 theory [5,6].

Unable to retrieve citations for this document

Retrieving citations for document...

Open Access
January 4, 2013
### Abstract

We show that a certain eigenvalue minimization problem in two dimensions for the Laplace operator in conformal classes is equivalent to the composite membrane problem. We again establish such a link in higher dimensions for eigenvalue problems stemming from the critical GJMS operators. New free boundary problems of unstable type arise in higher dimensions linked to the critical GJMS operator. In dimension four, the critical GJMS operator is exactly the Paneitz operator.

Unable to retrieve citations for this document

Retrieving citations for document...

Open Access
January 14, 2013
### Abstract

We give a non-probabilistic proof of a theorem of Naor and Neiman that asserts that if (E, d) is a doubling metric space, there is an integer N > 0, depending only on the metric doubling constant, such that for each exponent α ∈ (1/2; 1), one can find a bilipschitz mapping F = (E; d α ) ⃗ ℝ R N .

Unable to retrieve citations for this document

Retrieving citations for document...

Open Access
January 14, 2013
### Abstract

For an equiregular sub-Riemannian manifold M , Popp’s volume is a smooth volume which is canonically associated with the sub-Riemannian structure, and it is a natural generalization of the Riemannian one. In this paper we prove a general formula for Popp’s volume, written in terms of a frame adapted to the sub-Riemannian distribution. As a first application of this result, we prove an explicit formula for the canonical sub- Laplacian, namely the one associated with Popp’s volume. Finally, we discuss sub-Riemannian isometries, and we prove that they preserve Popp’s volume. We also show that, under some hypotheses on the action of the isometry group of M , Popp’s volume is essentially the unique volume with such a property.

Unable to retrieve citations for this document

Retrieving citations for document...

Open Access
January 14, 2013
### Abstract

We show that for n ≥ 5, a length space (X; d) satisfies a rough n-point condition if and only if it is rough CAT(0). As a consequence, we show that the class of rough CAT(0) spaces is closed under reasonably general limit processes such as pointed and unpointed Gromov-Hausdorff limits and ultralimits.

Unable to retrieve citations for this document

Retrieving citations for document...

Open Access
February 7, 2013
### Abstract

Let X be a metric space with doubling measure and L a one-to-one operator of type ω having a bounded H∞ -functional calculus in L2(X) satisfying the reinforced (pL; qL) off-diagonal estimates on balls, where pL ∊ [1; 2) and qL ∊ (2;∞]. Let φ : X × [0;∞) → [0;∞) be a function such that φ (x;·) is an Orlicz function, φ(·;t) ∊ A∞(X) (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index l(φ) ∊ (0;1] and φ(·; t) satisfies the uniformly reverse Hölder inequality of order (qL/l(φ))′, where (qL/l(φ))′ denotes the conjugate exponent of qL/l(φ). In this paper, the authors introduce a Musielak-Orlicz-Hardy space Hφ;L(X), via the Lusin-area function associated with L, and establish its molecular characterization. In particular, when L is nonnegative self-adjoint and satisfies the Davies-Gaffney estimates, the atomic characterization of Hφ,L(X) is also obtained. Furthermore, a sufficient condition for the equivalence between Hφ,L(ℝn) and the classical Musielak-Orlicz-Hardy space Hv(ℝn) is given. Moreover, for the Musielak-Orlicz-Hardy space Hφ,L(ℝn) associated with the second order elliptic operator in divergence form on ℝn or the Schrödinger operator L := −Δ + V with 0 ≤ V ∊ L1loc(ℝn), the authors further obtain its several equivalent characterizations in terms of various non-tangential and radial maximal functions; finally, the authors show that the Riesz transform ∇L−1/2 is bounded from Hφ,L(ℝn) to the Musielak-Orlicz space Lφ(ℝn) when i(φ) ∊ (0; 1], from Hφ,L(ℝn) to Hφ(ℝn) when i(φ) ∊ (; 1], and from Hφ,L(ℝn) to the weak Musielak-Orlicz-Hardy space WHφ(ℝn) when i(φ)=is attainable and φ(·; t) ∊ A1(X), where i(φ) denotes the uniformly critical lower type index of φ

Unable to retrieve citations for this document

Retrieving citations for document...

Open Access
March 1, 2013
### Abstract

In this paper, following [3], we provide some nonexistence results for semilinear equations in the the class of Carnot groups of type ★.This class, see [20], contains, in particular, all groups of step 2; like the Heisenberg group, and also Carnot groups of arbitrarly large step. Moreover, we prove some nonexistence results for semilinear equations in the Engel group, which is the simplest Carnot group that is not of type ★.

Unable to retrieve citations for this document

Retrieving citations for document...

Open Access
May 28, 2013
### Abstract

We study the mapping properties of fractional maximal operators in Sobolev and Campanato spaces in metric measure spaces. We show that, under certain restrictions on the underlying metric measure space, fractional maximal operators improve the Sobolev regularity of functions and map functions in Campanato spaces to Hölder continuous functions. We also give an example of a space where fractional maximal function of a Lipschitz function fails to be continuous.

Unable to retrieve citations for this document

Retrieving citations for document...

Open Access
May 28, 2013
### Abstract

The metric Markov cotype of barycentric metric spaces is computed, yielding the first class of metric spaces that are not Banach spaces for which this bi-Lipschitz invariant is understood. It is shown that this leads to new nonlinear spectral calculus inequalities, as well as a unified framework for Lipschitz extension, including new Lipschitz extension results for CAT (0) targets. An example that elucidates the relation between metric Markov cotype and Rademacher cotype is analyzed, showing that a classical Lipschitz extension theorem of Johnson, Lindenstrauss and Benyamini is asymptotically sharp.

Unable to retrieve citations for this document

Retrieving citations for document...

Open Access
June 11, 2013
### Abstract

In this paper we discuss asymmetric length structures and asymmetric metric spaces. A length structure induces a (semi)distance function; by using the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempotent. As a typical application, we consider the length of paths defined by a Finslerian functional in Calculus of Variations. In the second part we generalize the setting of General metric spaces of Busemann, and discuss the newly found aspects of the theory: we identify three interesting classes of paths, and compare them; we note that a geodesic segment (as defined by Busemann) is not necessarily continuous in our setting; hence we present three different notions of intrinsic metric space.

Unable to retrieve citations for this document

Retrieving citations for document...

Open Access
July 16, 2013
### Abstract

We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.

Unable to retrieve citations for this document

Retrieving citations for document...

Open Access
August 6, 2013
### Abstract

In this paper we study heat kernels associated with a Carnot group G, endowed with a family of collapsing left-invariant Riemannian metrics σ ε which converge in the Gromov- Hausdorff sense to a sub-Riemannian structure on G as ε→ 0. The main new contribution are Gaussian-type bounds on the heat kernel for the σ ε metrics which are stable as ε→0 and extend the previous time-independent estimates in [16]. As an application we study well posedness of the total variation flow of graph surfaces over a bounded domain in a step two Carnot group (G; σ ε ). We establish interior and boundary gradient estimates, and develop a Schauder theory which are stable as ε → 0. As a consequence we obtain long time existence of smooth solutions of the sub-Riemannian flow (ε = 0), which in turn yield sub-Riemannian minimal surfaces as t → ∞.

Unable to retrieve citations for this document

Retrieving citations for document...

Open Access
October 25, 2013
### Abstract

This paper studies analytic aspects of so-called resistance conditions on metric measure spaces with a doubling measure. These conditions are weaker than the usually assumed Poincaré inequality, but however, they are sufficiently strong to imply several useful results in analysis on metric measure spaces. We show that under a perimeter resistance condition, the capacity of order one and the Hausdorff content of codimension one are comparable. Moreover, we have connections to the Sobolev inequality for compactly supported Lipschitz functions on balls as well as capacitary strong type estimates for the Hardy-Littlewood maximal function. We also consider extensions to Sobolev type inequalities with two different measures and Lorentz type estimates.

Unable to retrieve citations for this document

Retrieving citations for document...

Open Access
November 12, 2013
### Abstract

In this paper we prove that every collection of measurable functions f α , |α| = m, coincides a.e. withmth order derivatives of a function g ∈ C m−1 whose derivatives of order m − 1 may have any modulus of continuity weaker than that of a Lipschitz function. This is a stronger version of earlier results of Lusin, Moonens-Pfeffer and Francos. As an application we construct surfaces in the Heisenberg group with tangent spaces being horizontal a.e.