Unable to retrieve citations for this document
Retrieving citations for document...
Requires Authentication
Unlicensed
Licensed
March 3, 2008
Unable to retrieve citations for this document
Retrieving citations for document...
Requires Authentication
Unlicensed
Licensed
March 3, 2008
Abstract
Protein degradation is a physiological process required to maintain cellular functions. There are distinct proteolytic systems for different physiological tasks under changing environmental and pathophysiological conditions. The proteasome is responsible for the removal of oxidatively damaged proteins in the cytosol and nucleus. It has been demonstrated that proteasomal degradation increases due to mild oxidation, whereas at higher oxidant levels proteasomal degradation decreases. Moreover, the proteasome itself is affected by oxidative stress to varying degrees. The ATP-stimulated 26S proteasome is sensitive to oxidative stress, whereas the 20S form seems to be resistant. Non-degradable protein aggregates and cross-linked proteins are able to bind to the proteasome, which makes the degradation of other misfolded and damaged proteins less efficient. Consequently, inhibition of the proteasome has dramatic effects on cellular aging processes and cell viability. It seems likely that during oxidative stress cells are able to keep the nuclear protein pool free of damage, while cytosolic proteins may accumulate. This is because of the high proteasome content in the nucleus, which protects the nucleus from the formation and accumulation of non-degradable proteins. In this review we highlight the regulation of the proteasome during oxidative stress and aging.
Unable to retrieve citations for this document
Retrieving citations for document...
Requires Authentication
Unlicensed
Licensed
March 3, 2008
Abstract
Oxidative stress in cells and tissues can occur during pathophysiological developments, e.g., during inflammatory and allergic diseases or during ischemic or toxic and hyperglycemic conditions via the generation of reactive oxygen species (ROS). Moreover, ROS can be generated by radiation (UV, X-rays) and pharmacologically, e.g., by anthracyclins as chemotherapeutic compounds for treatment of a variety of tumors to induce ‘stress or aberrant signaling-inducing senescence’ (STASIS). Although STASIS is distinguished from intracellular replicative senescence, a variety of cellular mechanisms appear similar in both aging pathways. It is generally accepted that oxidative stress and ROS eventually cause DNA damage, whereby insufficient cellular repair mechanisms may contribute to premature aging and apoptosis. Conversely, ROS-induced imbalances of the signaling pathways for metabolic protein turnover may also result in opposite effects to recruit malfunctioning aberrant proteins and compounds that trigger tumorigenic processes. Consequently, DNA damage plays a role in the development of carcinogenesis, but is also associated with an aging process in cells and organisms.
Unable to retrieve citations for this document
Retrieving citations for document...
Requires Authentication
Unlicensed
Licensed
March 3, 2008
Abstract
The prevalence of heart diseases, such as coronary artery disease and congestive heart failure, increases with age. Optimal therapeutic interventions that antagonize aging may reduce the occurrence and mortality of adult heart diseases. We discuss here how molecular mechanisms mediating life span extension affect aging of the heart and its resistance to pathological insults. In particular, we review our recent findings obtained from transgenic mice with cardiac-specific overexpression of Sirt1, which demonstrated delayed aging and protection against oxidative stress in the heart. We propose that activation of known longevity mechanisms in the heart may represent a novel cardioprotection strategy against aging and certain types of cardiac stress, such as oxidative stress.
Unable to retrieve citations for this document
Retrieving citations for document...
Requires Authentication
Unlicensed
Licensed
March 3, 2008
Abstract
The klotho gene functions as an aging-suppressor gene that extends life span when overexpressed and accelerates aging-like phenotypes when disrupted in mice. The klotho gene encodes a single-pass transmembrane protein that binds to multiple fibroblast growth factor (FGF) receptors and functions as a co-receptor for FGF23, a bone-derived hormone that suppresses phosphate reabsorption and vitamin D biosynthesis in the kidney. In addition, the extracellular domain of Klotho protein is shed and secreted, potentially functioning as a humoral factor. The secreted Klotho protein can regulate multiple growth factor signaling pathways, including insulin/IGF-1 and Wnt, and the activity of multiple ion channels. Klotho protein also protects cells and tissues from oxidative stress, yet the precise mechanism underlying these activities remains to be determined. Thus, understanding of Klotho protein function is expected to provide new insights into the molecular basis for aging, phosphate/vitamin D metabolism, cancer and stem cell biology.
Unable to retrieve citations for this document
Retrieving citations for document...
Requires Authentication
Unlicensed
Licensed
March 3, 2008
Abstract
To respond adequately to oxidative stress, mammalian cells elicit rapid and tightly controlled changes in gene expression patterns. Besides alterations in the subsets of transcribed genes, two posttranscriptional processes prominently influence the oxidant-triggered gene expression programs: mRNA turnover and translation. Here, we review recent progress in our knowledge of the t urnover and t ranslation r egulatory (TTR) m R NA- b inding p roteins (RBPs) that influence gene expression in response to oxidative damage. Specifically, we identify oxidant damage-regulated mRNAs that are targets of TTR-RBPs, we review the oxidant-triggered signaling pathways that govern TTR-RBP function, and we examine emerging evidence that TTR-RBP activity is altered with senescence and aging. Given the potent influence of TTR-RBPs upon oxidant-regulated gene expression profiles, we propose that the senescence-associated changes in TTR-RBPs directly contribute to the impaired responses to oxidant damage that characterize cellular senescence and advancing age.
Unable to retrieve citations for this document
Retrieving citations for document...
Requires Authentication
Unlicensed
Licensed
March 3, 2008
Abstract
Life span in individual humans is very heterogeneous. Thus, the ageing rate, measured as the decline of functional capacity and stress resistance, is different in every individual. There have been attempts made to analyse this individual age, the so-called biological age, in comparison to chronological age. Biomarkers of ageing should help to characterise this biological age and, as age is a major risk factor in many degenerative diseases, could be subsequently used to identify individuals at high risk of developing age-associated diseases or disabilities. Markers based on oxidative stress, protein glycation, inflammation, cellular senescence and hormonal deregulation are discussed.
Unable to retrieve citations for this document
Retrieving citations for document...
Requires Authentication
Unlicensed
Licensed
March 3, 2008
Abstract
Aging at the molecular level is characterized by the progressive accumulation of molecular damage. The sources of damage act randomly through environmental and metabolically generated free radicals, through spontaneous errors in biochemical reactions, and through nutritional components. However, damage to a macromolecule may depend on its structure, localization and interactions with other macromolecules. Damage to the maintenance and repair pathways comprising homeodynamic machinery leads to age-related failure of homeodynamics, increased molecular heterogeneity, altered cellular functioning, reduced stress tolerance, diseases and ultimate death. Novel approaches for testing and developing effective means of intervention, prevention and modulation of aging involve means to minimize the occurrence and accumulation of molecular damage. Mild stress-induced hormesis by physical, biological and nutritional methods, including hormetins, represents a promising strategy for achieving healthy aging and for preventing age-related diseases.
Unable to retrieve citations for this document
Retrieving citations for document...
Requires Authentication
Unlicensed
Licensed
March 3, 2008
Abstract
Females live longer than males. We have shown that the higher levels of estrogens in females protect them against aging, by up-regulating the expression of antioxidant, longevity-related genes, such as that of selenium-dependent glutathione peroxidase (GPx) and Mn-superoxide dismutase (Mn-SOD). Both estradiol and genistein (the most abundant phytoestrogen in soybeans) share chemical properties which confer antioxidant features to these compounds. However, the low concentration of estrogens and phytoestrogens make it unlikely that they exhibit significant antioxidant capacity in the organism. Physiological concentrations of estrogens and nutritionally relevant concentrations of genistein activate the MAP kinase pathway. These, in turn, activate the nuclear factor kappa B (NF-κB) signaling pathway. Activation of NF-κB by estrogens subsequently activates the expression of Mn-SOD and GPx, but genistein is only capable of activating Mn-SOD expression. This could be due to the fact that genistein binds preferably to estrogen receptor β. The antioxidant protection is reflected in the lower peroxide levels found in cells treated with estrogens or phytoestrogens when compared with controls. The challenge for the future is to find molecules that have the beneficial effects of estradiol, but without its feminizing effects. Phytoestrogens or phytoestrogen-related molecules may be good candidates to meet this challenge.
Unable to retrieve citations for this document
Retrieving citations for document...
Requires Authentication
Unlicensed
Licensed
March 3, 2008
Abstract
Forkhead box O (FoxO) transcription factors are important downstream targets of the PI3K/Akt signaling pathway and crucial regulators of cell fate. This function of FoxOs relies on their ability to control diverse cellular functions, including proliferation, differentiation, apoptosis, DNA repair, defense against oxidative stress and ageing. FoxOs are regulated by a variety of different growth factors and hormones, and their activity is tightly controlled by post-translational modifications, including phosphorylation, acetylation, ubiquitination and interaction with different proteins and transcription factors. This brief review focuses on the molecular mechanisms, cellular effects and resulting organismal phenotypes generated by differentially regulated FoxO proteins and discusses our current understanding of the role of FoxOs in disease and ageing processes.
Unable to retrieve citations for this document
Retrieving citations for document...
Requires Authentication
Unlicensed
Licensed
March 3, 2008
Abstract
The small bacterial 6S RNA has been recognized as a transcriptional regulator, facilitating the transition from exponential to stationary growth phase by preferentially inhibiting Eσ 70 RNA polymerase holoenzyme transcription. Consistent with this function, the cellular concentration of 6S RNA increases with stationary phase. We have studied the underlying mechanisms responsible for the growth phase-dependent differences in 6S RNA concentration. To this aim, we have analyzed the effects of the typical bacterial growth phase and stress regulators FIS, H-NS, LRP and StpA on 6S RNA expression. Measurements of 6S RNA accumulation in strains deficient in each one of these proteins support their contribution as potential regulators. Specific binding of the four proteins to DNA fragments containing 6S RNA promoters was demonstrated by gel retardation and DNase I footprinting. Moreover, in vitro transcription analysis with both RNA polymerase holoenzymes, Eσ 70 and Eσ 38 , demonstrated a direct inhibition of 6S RNA transcription by H-NS, StpA and LRP, while FIS seems to act as a dual regulator. In vitro transcription in the presence of ppGpp indicates that 6S RNA promoters are not stringently regulated. Our results underline that regulation of 6S RNA transcription depends on a complex network, involving a set of bacterial regulators with general importance in the adaptation to changing growth conditions.
Unable to retrieve citations for this document
Retrieving citations for document...
Requires Authentication
Unlicensed
Licensed
March 3, 2008
Abstract
Turmerin is a protein from Turmeric ( Curcuma longa L.) with a relative molecular mass of 14 kDa. The protein inhibits the enzymatic activity and neutralises the pharmacological properties, such as cytotoxicity, oedema and myotoxicity of multitoxic phospholipase A 2 (NV-PLA 2 ) of cobra ( Naja naja ) venom at a 1:2.5 molar ratio of NV-PLA 2 :Turmerin. A Lineweaver-Burk plot indicates that Turmerin follows a linear mixed type of inhibition.
Unable to retrieve citations for this document
Retrieving citations for document...
Requires Authentication
Unlicensed
Licensed
March 3, 2008
Abstract
Fine-tuning of insulin secretion from pancreatic β-cells participates in blood glucose homeostasis. Defects in this process can lead to chronic hyperglycemia and diabetes mellitus. Several proteins controlling insulin exocytosis have been identified, but the mechanisms regulating their expression remain poorly understood. Here, we show that two non-coding microRNAs, miR124a and miR96, modulate the expression of proteins involved in insulin exocytosis and affect secretion of the β-cell line MIN6B1. miR124a increases the levels of SNAP25, Rab3A and synapsin-1A and decreases those of Rab27A and Noc2. Inhibition of Rab27A expression is mediated by direct binding to the 3′-untranslated region of Rab27A mRNA. The effect on the other genes is indirect and linked to changes in mRNA levels. Over-expression of miR124a leads to exaggerated hormone release under basal conditions and a reduction in glucose-induced secretion. miR96 increases mRNA and protein levels of granuphilin, a negative modulator of insulin exocytosis, and decreases the expression of Noc2, resulting in lower capacity of MIN6B1 cells to respond to secretagogues. Our data identify miR124a and miR96 as novel regulators of the expression of proteins playing a critical role in insulin exocytosis and in the release of other hormones and neurotransmitters.
Unable to retrieve citations for this document
Retrieving citations for document...
Requires Authentication
Unlicensed
Licensed
March 3, 2008
Abstract
Many studies suggest that BACE 1 is the genuine β-secretase; however, this is not undisputed. The wild-type (WT) β-site of the amyloid precursor protein (APP) present in the worldwide population is cleaved very slowly ( k cat / K m : approx. 50 m -1 s -1 ), while proteases acting on relevant substrates are much more efficient ( k cat / K m : 10 4 –10 6 m -1 s -1 ). Knock-out of BACE 1 in mouse markedly reduces Aβ formation. Nevertheless, studies in other systems show that knock-out experiments in rodents and corresponding genetic defects in human may reveal different phenotypes. Considering these issues, we searched for other β-secretase candidate(s), identified cathepsin D, and evaluated properties of cathepsin D related to BACE 1 that were not examined previously. The kinetic constants ( k cat , K m , k cat / K m ) for cleaving peptides with β-sites of the WT or the mutated Swedish families (SW) APP by human BACE 1 and cathepsin D were determined and found to be similar. Western blots reveal that in human brain cathepsin D is approximately 280-fold more abundant than BACE 1. Furthermore, pepstatin A strongly inhibits the cleavage of SW and WT peptides by both brain extracts and cathepsin D, but not by BACE 1. These findings indicate that β-secretase activity observed in brain extracts is mainly due to cathepsin D. Nevertheless, as both BACE 1 and cathepsin D show poor activity towards the WT β-site sequence, it is necessary to continue the search for additional β-secretase candidate(s).