Abstract
Given Banach space operators A i , B i ( i = 1, 2), let δ i denote (the generalised derivation) δ i ( X ) = ( L Ai − R Bi )( X ) = A i X − XB i . If 0 ∈ σ a ( B i ), i = 1, 2, and if Δδ1,δ2n(I)=(Lδ1Rδ1-I)n(I)=0 \Delta _{{\delta _1},\delta 2}^n\left( I \right) = {\left( {{L_{{\delta _1}}}{R_{{\delta _1}}} - I} \right)^n}\left( I \right) = 0 , then ΔA1,A2n(I)=0 \Delta _{{A_1},A2}^n\left( I \right) = 0 . For Hilbert space pairs ( A , B ) such that 0 ∈ σ a ( B * ) and Δδ*,δn(I)=0(i.e., δ is n-isometric) \Delta _{{\delta ^*},\delta }^n\left( I \right) = 0\left( {i.e.,\,\delta \,is\,n - isometric} \right) , where δ = δ A , B and δ * = δ A * , B *, this implies ΔA*,An(I)=0 \Delta _{{A^*},A}^n\left( I \right) = 0 (and hence there exists a positivie integer m ≤ n such that A is strictly m -isometric). If Δδ*,δn(I)=0 \Delta _{{\delta ^*},\delta }^n\left( I \right) = 0 , then there exists a scalar λ such that 0 ∈ σ a (( B − λ I ) * ) and, given δ is strictly n -isometric, there exists a positive integer m ≤ n such that A − λ I is strictly m -isometric. Furthermore, there exist decompositions ℋ = ℋ 1 ⊕ ℋ 2 and ℋ = ℋ 11 ⊕ ℋ 22 of ℋ and t i -nilpotent operators N i ( i = 1, 2) such that either A − λI = αI + N 1 and B − λI = (0 I | ℋ 1 ⊕ 2 e it I | ℋ2 ) + N 2 , or, A − λI = αI + N 1 , α = e it , 0 ≤ t < 2 π , and B − λI = (0 I |ℋ 11 ⊕ 2 e it I |ℋ 22 ) + N 2 , or, A − λ = ( α 1 I |ℋ 1 ⊕ α 2 I |ℋ 2 ) + N 1 and B λ = (0I|ℋ 11 ⊕ μI |ℋ 22 ) + N 2 , where μ = e it | μ |, 0 ≤ t < 2 π , 0 < | μ | < 2, α1=eit| μ |+i4-| μ |22 {\alpha _1} = {e^{it}}{{\left| \mu \right| + i\sqrt {4 - {{\left| \mu \right|}^2}} } \over 2} and α2=eit| μ |-i4-| μ |22 {\alpha _2} = {e^{it}}{{\left| \mu \right| - i\sqrt {4 - {{\left| \mu \right|}^2}} } \over 2} .