Abstract
In this paper, we show the existence of an S -shaped connected component in the set of radial positive solutions of boundary value problem − div(ϕN(∇y))=λa(|x|)f(y)inA,∂y∂ν=0 on Γ1,y=0 onΓ2, $$\begin{array}{} \displaystyle \left\{\,\begin{array}{} -\text{ div}\big(\phi_N(\nabla y)\big)=\lambda a(|x|)f(y)\, \, \, \, \, \text{in}\, \, \mathcal{A},\\\frac{\partial y}{\partial \nu}=0\, \, \, \,\, \text{ on }\, \, {\it\Gamma}_1,\qquad y=0\, \, \, \, \text{ on}\, \, {\it\Gamma}_2,\\ \end{array} \right. \end{array} $$ where R 2 ∈ (0, ∞) and R 1 ∈ (0, R 2 ) is a given constant, 𝓐 = { x ∈ ℝ N : R 1 < ∣ x ∣ < R 2 }, Γ 1 = { x ∈ ℝ N : ∣ x ∣ = R 1 }, Γ 2 = { x ∈ ℝ N : ∣ x ∣ = R 2 }, ϕN(s)=s1−|s|2, $\begin{array}{} \phi_N(s)=\frac{s}{\sqrt{1-|s|^2}}, \end{array} $ s ∈ ℝ N , λ is a positive parameter, a ∈ C [ R 1 , R 2 ], f ∈ C [0, ∞), ∂y∂ν $\begin{array}{} \frac{\partial y}{\partial \nu} \end{array} $ denotes the outward normal derivative of y and ∣⋅∣ denotes the Euclidean norm in ℝ N . The proof of main result is based upon bifurcation techniques.