Contents

Preface vii
Notation ix
1 What is surface tension? 1
  1.1 Surface tension and its definition 1
  1.2 Physical origin of the surface tension of liquids 2
  1.3 Temperature dependence of the surface tension 5
  1.4 Surfactants 6
  1.5 The Laplace pressure 6
  1.6 Surface tension of solids 8
  1.7 Values of surface tensions of solids 9
Appendix 1A. The short-range nature of intermolecular forces 10
Appendix 1B. The Laplace pressure from simple reasoning 10
Bullets 11
References 12
2 Wetting of ideal surfaces 13
  2.1 What is wetting? The spreading parameter 13
  2.2 The Young equation 14
  2.3 Wetting of flat homogeneous curved surfaces 17
  2.4 Line tension 19
  2.5 Disjoining pressure 20
  2.6 Wetting of an ideal surface: influence of absorbed liquid layers and the liquid vapor 22
  2.7 Gravity and wetting of ideal surfaces: a droplet shape and liquid puddles 24
  2.8 The shape of the droplet and the disjoining pressure 27
  2.9 Distortion of droplets by an electric field 29
  2.10 Capillary rise 30
  2.11 The shape of a droplet wetting a fiber 33
2.12 Wetting and adhesion. The Young–Dupre equation .................................. 35
2.13 Wetting transitions on ideal surfaces ......................................................... 36
2.14 How the surface tension is measured? ......................................................... 37
  2.14.1 The Du Noüy ring and the Wilhelmy plate methods ............................ 37
  2.14.2 The pendant drop method .................................................................. 38
  2.14.3 Maximum bubble pressure method ..................................................... 39
  2.14.4 Dynamic methods of measurement of surface tension ......................... 40
2.15 Measurement of surface tension of solids .................................................... 43
Appendix 2A. Transversality conditions .......................................................... 44
Appendix 2B. Zisman plot .................................................................................. 45
Bullets ................................................................................................................. 46
References ............................................................................................................ 46

3 Contact angle hysteresis .................................................................................... 50
  3.1 Contact angle hysteresis: its sources and manifestations ............................ 50
  3.2 Contact angle hysteresis on smooth homogeneous substrates .................... 52
  3.3 Strongly and weakly pinning surfaces ......................................................... 53
  3.4 Qualitative characterization of the pinning of the triple line ......................... 57
  3.5 The zero eventual contact angle of evaporated droplets and its explanation .... 58
  3.6 Contact angle hysteresis and line tension ..................................................... 59
  3.7 More physical reasons for the contact angle hysteresis on smooth ideal surfaces ........................................................................................................... 60
  3.8 Contact angle hysteresis on chemically heterogeneous smooth surfaces: the phenomenological approach. Acquaintance with the apparent contact angle ........................................................................................................... 61
  3.9 The phenomenological approach to the hysteresis of the contact angle developed by Vedantam and Panchagnula ......................................................... 62
  3.10 The macroscopic approach to the contact angle hysteresis, the model of Joanny and de Gennes ........................................................................................................... 63
    3.10.1 Elasticity of the triple line .................................................................... 63
    3.10.2 Contact angle hysteresis in the case of a dilute system of defects ........... 66
    3.10.3 Surfaces with dense defects and the fine structure of the triple line .......... 66
  3.11 Deformation of the substrate as an additional source of the contact angle hysteresis ........................................................................................................... 68
3.12 How the contact angle hysteresis can be measured ............... 69
3.13 Roughness of the substrate and the contact angle hysteresis .... 71
3.14 Use of contact angles for characterization of solid surfaces ...... 71
Appendix 3A. A droplet on an inclined plane .......................... 73
References .............................................................................. 75

4 Dynamics of wetting .............................................................. 78
4.1 The dynamic contact angle ............................................... 78
4.2 The dynamics of wetting: the approach of Voinov .............. 78
4.3 The dynamic contact angle in a situation of complete wetting ... 80
4.4 Dissipation of energy in the vicinity of the triple line .......... 82
4.5 Dissipation of energy and the microscopic contact angle ....... 83
4.6 A microscopic approach to the displacement of the triple line ... 83
4.7 Spreading of droplets: Tanner’s law ................................. 84
4.8 Superspreading ............................................................... 85
4.9 Dynamics of filling of capillary tubes ................................ 85
4.10 The drag-out problem ...................................................... 87
4.11 Dynamic wetting of heterogeneous surfaces .................... 88
References .............................................................................. 90

5 Wetting of rough and chemically heterogeneous surfaces: the Wenzel
and Cassie models ................................................................. 92
5.1 General remarks .............................................................. 92
5.2 The Wenzel model .......................................................... 92
5.3 Wenzel wetting of chemically homogeneous curved rough surfaces 94
5.4 The Cassie–Baxter wetting model .................................... 96
5.5 The Israelachvili and Gee criticism of the Cassie–Baxter model ... 97
5.6 Cassie–Baxter wetting in a situation where a droplet partially sits
on air .................................................................................. 98
5.7 The Cassie–Baxter wetting of curved surfaces .................... 101
5.8 Cassie–Baxter impregnating wetting .................................. 101
5.9 The importance of the area adjacent to the triple line in the wetting
of rough and chemically heterogeneous surfaces ................... 103
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.8.3</td>
<td>Surfaces built of ensembles of balls</td>
<td>146</td>
</tr>
<tr>
<td>7.9</td>
<td>Mechanisms of wetting transitions: the dynamics</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>Bullets</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>149</td>
</tr>
<tr>
<td>8</td>
<td>Electrowetting and wetting in the presence of external fields</td>
<td>152</td>
</tr>
<tr>
<td>8.1</td>
<td>General remarks</td>
<td>152</td>
</tr>
<tr>
<td>8.2</td>
<td>Electrowetting</td>
<td>152</td>
</tr>
<tr>
<td>8.3</td>
<td>Wetting in the presence of external fields: a general case</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Bullets</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>155</td>
</tr>
<tr>
<td>9</td>
<td>Nonstick droplets</td>
<td>156</td>
</tr>
<tr>
<td>9.1</td>
<td>General remarks</td>
<td>156</td>
</tr>
<tr>
<td>9.2</td>
<td>Leidenfrost droplets</td>
<td>156</td>
</tr>
<tr>
<td>9.3</td>
<td>Liquid marbles</td>
<td>158</td>
</tr>
<tr>
<td>9.3.1</td>
<td>What are liquid marbles?</td>
<td>158</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Liquid marble/support interface</td>
<td>160</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Liquid marble/vapor interface</td>
<td>161</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Effective surface tension of liquid marbles</td>
<td>161</td>
</tr>
<tr>
<td>9.3.5</td>
<td>Scaling laws governing the shape of liquid marbles</td>
<td>162</td>
</tr>
<tr>
<td>9.3.6</td>
<td>Properties of liquid marbles: the dynamics</td>
<td>163</td>
</tr>
<tr>
<td>9.3.7</td>
<td>Actuation of liquid marbles with electric and magnetic fields</td>
<td>164</td>
</tr>
<tr>
<td>9.3.8</td>
<td>Applications of liquid marbles</td>
<td>165</td>
</tr>
<tr>
<td>9.4</td>
<td>Nonstick drops bouncing a fluid bath</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Bullets</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>169</td>
</tr>
</tbody>
</table>