Klapötke, Answers to the study questions from the graduate-level textbook *Chemistry of High-Energy Materials, 4th edition*, De Gruyter, Berlin/Boston, 2017 ISBN 978-3-11-053631-7

© 2018 by Walter de Gruyter GmbH & Co. KG, Berlin/Boston

Answers

1. FOX-7:

$$H_2N$$
 $C=C$ NO_2 H_2N NO_2

PETN:

RDX:

2. 4.3 m

3. single base gun propellant: NC (12.5%) double base gun propellant: NC : NG (50 : 50)

triple base gun propellant: NC : NG : NQ (25: 25: 50)

4. One fundamental problem for formulations containing red phosphorus and magnesium, in particular in formulations which contain a substoichiometric quantity of oxidizer, is that a thermodynamically favourable side-reaction between the phosphorus and the magnesium can occur:

$$2 P + 3 Mg \rightarrow Mg_3P_2$$

The magnesium phosphide that is subsequently formed can react with atmospheric moisture to form phosphine which is toxic:

$$Mg_3P_2 + 6 H_2O \rightarrow 3 Mg(OH)_2 + 2 PH_3$$

This unwanted reaction can also occur very slowly if smoke munition is stored for several years, which can result in a considerable contamination of the munition depot (mainly bunkers or tunnel-shaped caves) with gaseous PH₃.

5. enthalpies of formation: Gaussian09 detonation parameters: EXPLO5

Cheetah 5.0

6. For a compound with the general formula $C_aH_bN_cO_d$, the oxygen balance Ω (in %) is defined as follows:

$$\Omega_{CO_2} = \frac{[d - (2a) - {b/2} \times 1600]}{M}$$

 $d = 6$

 $a = 2$

 $b = 4$

$$M = 152$$

$$\Omega = 0$$

7.
$$\sqrt{2E} = \frac{3\sqrt{3}}{16} D \approx \frac{D}{3.08}$$

 $\sqrt{2E} = 2.922 \text{ m s}^{-1}$

8. DL

reason: Higher density of DU. The Bernoulli equation shows the relationship between the penetration depth (P) and the length of the penetrator (L) with the densities of the penetrator (ρ_P) and the target (ρ_T):

$$P \sim L \sqrt{\frac{\rho_P}{\rho_T}}$$

9. The N_2/CO ratio should be high.

 T_c should be low.

10. The impact energy is: $E = \text{energy} = \text{work} \times \text{distance} = \text{mass} \times \text{acceleration} \times \text{distance}$, therefore:

$$E = 5 \text{ kg} \times 9.81 \text{ m s}^{-2} \times 0.5 \text{ m} = 24.5 \text{ kg m}^2 \text{ s}^{-2} = 24.5 \text{ Nm} = 24.5 \text{ J}$$

11. - mixed acid

- nitric acid, HNO₃ (65 100%)
- dinitrogen pentoxide, N₂O₅
- − NO₂⁺BF₄[−], nitronium tetrafluoroborate
- NO₂⁺OSO₂CF₃⁻, nitronium triflate

also: Ag salts, AgNO₃, AgNO₂ or KNO₃ / oleum (H₂SO₄/SO₃)

12. – for bipropellants in rocket propulsion, especially but not exclusively for pulsed mode operation – for incendiary devices

13. DNAN = dinitroanisole

or

IMX-101: DNAN = dinitroanisole (binder) + NTO (filler)

14. IMX-104: DNAN (binder) + NTO and RDX (filler)

15.
$$I_{sp} \sim \sqrt{\frac{T_c}{M}}$$

16.
$$\bar{F} = I_{sp} \frac{\Delta m}{\Delta t}$$

Where I_{sp} is the specific impulse in (m s⁻¹), Δ m is the mass of used propellant (in kg) and Δ t is the duration of burning of the engine (in s).

17. double-base: NC/NG formulation (homogeneous) composite: AP, Al, HTPB binder (heterogeneous)

18. 20 s

- 19. This is the NIR range. Suitable metals are Cs (caesium) and K (potassium).
- 20. Kamlet-Jacobs equation:

$$p_{\text{C-I}} [\text{kbar}] = K \rho_0^2 \phi$$

$$p_{\text{C-I}} \sim \rho_0^2$$

21. Both values can be estimated using Trouton's rule, where T_m is the melting point of the solid and T_b is the boiling point of the liquid:

$$\Delta H_{\text{sub.}} \left[\text{J mol}^{-1} \right] = 188 \, T_{\text{m}} \left[\text{K} \right]$$

 $\Delta H_{\text{vap.}} \left[\text{J mol}^{-1} \right] = 90 \, T_{\text{b}} \left[\text{K} \right]$

22. The Bernoulli equation shows the relationship between the penetration depth (P) and the length of the penetrator (L) with the densities of the penetrator (ρ_P) and the target (ρ_T):

$$P \sim L \sqrt{\frac{\rho_P}{\rho_T}}$$

23. The Gurney velocity $\sqrt{2E}$ and the detonation velocity (D = VoD) of an explosive can be described approximately using the following simple relationship:

$$\sqrt{2E} = \frac{3\sqrt{3}}{16}D \approx \frac{D}{3.08}$$

24. Technical N_2O_5 was previously mainly obtained by the dehydration of nitric acid at -10 °C, as N_2O_5 is the anhydride of nitric acid. It is an easily sublimed solid (subl. 32 °C, 1 bar).

$$4 \text{ HNO}_3 + P_4O_{10} \rightarrow 2 \text{ N}_2O_5 + 4 \text{ H}_3PO_4$$

Since 1983, the technical synthesis usually used has followed that developed by Lawrence Livermore National Laboratory, in which the electrolysis of nitric acid in the presence of N_2O_4 results in the formation of a ca. 15–20 % solution of N_2O_5 in anhydrous nitric acid.

$$2 \text{ HNO}_3 \xrightarrow{N_2O_4, -2e^-} N_2O_5 + H_2O$$

Pure and almost acid-free N_2O_5 can be obtained from the gas-phase ozonation of N_2O_4 using an ozone-oxygen mixture with a ca. 5–10 % ozone content.

$$N_2O_4 + O_3 \rightarrow N_2O_5 + O_2$$

25. ADN is synthesized by the nitration of ammonia using N_2O_5 (prepared by the ozonation of NO_2) in a chlorinated solvent:

Synthesis of N₂O₅:

$$2 \text{ NO}_2 + \text{O}_3 \rightarrow \text{N}_2\text{O}_5 + \text{O}_2$$

Synthesis of ADN:

$$\begin{array}{lll} NH_{3} + N_{2}O_{5} & \rightarrow (O_{2}N)NH_{2} + HNO_{3} \\ (O_{2}N)NH_{2} + N_{2}O_{5} \rightarrow (O_{2}N)_{2}NH + HNO_{3} \\ (O_{2}N)_{2}NH + NH_{3} & \rightarrow [NH_{4}^{+}][N(NO_{2})_{2}]^{T} \\ 2 HNO_{3} + 2 NH_{3} & \rightarrow 2 [NH_{4}^{+}][NO_{3}]^{T} \\ 4 NH_{3} + 2 N_{2}O_{5} & \rightarrow [NH_{4}^{+}][N(NO_{2})_{3}]^{T} + 2 [NH_{4}^{+}][NO_{3}]^{T} \end{array}$$

26. The biocidal activity of HF exceeds that of both Cl₂ and HCl. 200 ppm HF destroy most bacteria, including Anthrax spores.

27.
$$M_xO_v + AI \rightarrow M + AI_2O_3$$

- 28. Lead-free tetrazolate based primary explosive are:
 - Cu(I) nitrotetrazolate, DBX-1
 - Cu(II) 1-methyl-5-nitriminotetrazolate
 - [Na]₂ [(H₂O)₂Cu(nitrotetrazolate)₄]
- 29. Bis(trinitroethyl)-1,2,4,5-tetrazine-3,6-diamine (BTAT)

- 30. Decrease of thyroxin synthesis due to inhibition of iodine storage.
- 31. Underwater operations, torpedo propulsion.
- 32. Solid rocket motor: 3000–4000 bar Large calibre gun: 40–70 bar
- 33. a)
 - heat of explosion Q (in kJ kg⁻¹),
 - detonation velocity D (in m s⁻¹),
 - detonation pressure P (in kbar),

and less importantly,

- explosion temperature T (in K) and
- volume of gas released V per kg explosive (in L kg⁻¹).

b)

- the specific energy f_E or force or impetus ($f_E = n R T$),
- the combustion temperature T_c (in K),
- the co-volume b_E (in cm³ g⁻¹),
- the pressure p (in bar; 3000–4000 bar).

c)

The most important performance parameter is the specific impulse I_{sp} , or I_{sp}^* with:

$$I_{sp}^* = \frac{I_{sp}}{a}$$

The average thrust of a rocket \overline{F} can in accordance with the equation above be given simply as:

$$\bar{F} = I_{sp} \frac{\Delta m}{\Delta t}$$

- 34. the combustion temperature T_c , which should be low.
 - the N₂/CO ratio of the combustion gases, which should be high.
- 35. Target penetration of an EFP is much less than that of a jet (SC), but the hole diameter is larger with more armour backspall.
- 36. The gap test.

37. The fast cook-off test.

	advantage	disadvantage
RDX	Higher performance	Lower thermal stability than HNS, higher sensitivity than HNS
HNS	Higher thermal stability, lower sensitivity	Lower performance

- 39. very high sensitivity
 - very high vapour pressure (volatile)
- 40. a) isochoric
 - b) isobaric
 - c) isochoric
- 41. a) SrCl

SrOH

b) BaCl

BaOH

Ва

42. In accordance with the rule of Wien, the maximum wavelength of the blackbody radiation λ_{max} (μ m) shifts towards shorter wavelengths (higher energy) with increasing temperature:

$$\lambda_{\text{max}} = 2897.756~\mu\text{m}$$
 K T $^{-1}$

43. The burn rate increases with increasing pressure:

$$r = \beta p^{\alpha}$$

In this context, β is a coefficient ($\beta = f(T)$) and α is the index of the burn rate which describes the pressure dependency. The index α is < 1 for energetic materials which deflagrate and > 1 for detonating explosives.

- 44. Usually (at least in the μm region) smaller particles show a much higher sensitivity towards electrostatic discharge.
- 45. The main advantage of the EFP over a conventional shaped charge is its effectiveness at very large standoff distances, equal to hundreds of times the charge's diameter (perhaps a hundred meters for a practical device):

46. At high temperatures CO is thermodynamically favored over CO2 according to the Boudouard equilibrium:

$$CO_2(g) + C(s) = 2CO(g)$$
 $\Delta H^0 = +173 \text{ kJ mol}^{-1}$

- 47. oxidation of the carbon back-bone, e.g. TNT
 - introduction of ring or cage strain, e.g. CL-20
 - highly endothermic, nitrogen-rich compounds, e.g. TAGzT
- 48. nitro: TNT, HNS

nitrate (nitrate ester): NG nitramino: RDX, HMX nitrimino: TAG 1-MNT

azide: Pb(N₃)₂ peroxo: TATP

- 49. in pure (liquid) form too sensitive,
 - crystallizes at about 13 °C,
 - in safe to handle formulations (e.g. dynamite) too low-performance.
- 50. Kamlet and Jacobs suggested an empirical relationship between the detonation velocity and the **detonation pressure**. In this, the detonation velocity D is linear and the detonation pressure p_{C-J} to the power of two dependent on the loading density ρ_0 (in g cm⁻³):

$$p_{\text{C-I}} [\text{kbar}] = K \rho_0^2 \phi$$

$$D \text{ [mm } \mu \text{s}^{-1}] = A \phi^{0.5} (1 + B \rho_0)$$

The constants K, A and B are defined as follows: K = 15.88

A = 1.01

B = 1.30

The value ϕ is therefore

$$\phi = N (M)^{0.5} (Q)^{0.5}$$

where -N is the moles of gas released per gram of explosive,

- M is the mass of gas in gram per mole of gas and
- Q is the heat of explosion in cal per gram.
- 51. 0.250 J = 250 mJ

- 52. Oxone® (2 KHSO₅ · KHSO₄ · K₂SO₄; the active ingredient is: KHSO₅)
 - MCPBA [meta-chloro perbenzoic acid]
 - H₂O₂ / H₂SO₄
 - H₂O₂ / CF₃-COOH
 - ozone
 - HOF
- 53. MMH: (CH₃)HN-NH₂

UDMH: (CH₃)₂N-NH₂

DMAZ: $N-CH_2-CH_2-N_3$

2-Dimethylaminoethylazide

- hypergolic fuels (with N2O4 and WFNA) and bipropellants
- MMH replacement, less toxic
- 54. 166.8 kN
- 55. EBW, EFI (also known as "slapper detonator"), hotwire detonators
- 56. Although electric detonators appear to be much more complicated than simple hot wire devices, the advantages of electric detonators are obvious:
 - safety, insensitivity
 - reliability
 - precision
 - repeatability
 - simultaneity
 - shot to shot reliability (under 5 microseconds).
- 57. MTX-1
- 58. DMAZ or TMTZ
- 59. the shock energy from an underwater explosion measures the explosive's shattering action in other materials (μs time-scale);
 - the bubble energy from the underwater explosion measures the heaving action of the explosive (ms time-scale).
- 60. D [km s⁻¹] = 1.453 $I_{\rm sp}$ [N s g⁻¹] ρ_0 [g cm⁻³] + 1.98 $\rho_{\rm C-J}$ [kbar] = 44.4 $I_{\rm sp}$ [N s g⁻¹] ρ_0^2 [g² cm⁻⁶] -21

61. IMX-104 (DNAN + NTO + RDX)

OH
$$H_3C$$
 CH_3 $Step 1$ H_3C CH_3 H_3C CH_3 H_3C CH_3 H_3C CH_3 CH_3 CH_3 CH_4 CH_5 CH