Search Results

You are looking at 1 - 5 of 5 items

  • Author: Abher Rasheed x
Clear All Modify Search
An introduction

Abstract

This paper aims to investigate the relationship between fabric weave structure and its comfort properties. The two basic weave structures and four derivatives for each selected weave structure were studied. Comfort properties, porosity, air permeability and thermal resistance of all the fabric samples were determined. In our research the 1/1 plain weave structure showed the highest thermal resistance making it suitable for cold climatic conditions. The 2/2 matt weave depicted the lowest thermal resistance which makes it appropriate for hot climatic conditions.

Abstract

A common problem faced in fabric manufacturing is the production of inconsistent fabric width on shuttleless looms in spite of the same fabric specifications. Weft-wise crimp controls the fabric width and it depends on a number of factors, including warp tension, temple type, fabric take-up pressing tension and loom working width. The aim of this study is to investigate the effect of these parameters on the fabric width produced. Taguchi’s orthogonal design was used to optimise the weaving parameters for obtaining controlled fabric width. On the basis of signal to noise ratios, it could be concluded that controlled fabric width could be produced using medium temple type and intense take-up pressing tension at relatively lower warp tension and smaller loom working width. The analysis of variance revealed that temple needle size was the most significant factor affecting the fabric width, followed by loom working width and warp tension, whereas take-up pressing tension was least significant of all the factors investigated in the study.

Abstract

The aim of this study was to analyse the effects of various fabric parameters on the thermal resistance, thermal conductivity, thermal transmittance, thermal absorptivity and thermal insulation of polyester/cotton double layer knitted interlock fabrics. It was found that by increasing fibre content with higher specific heat increases the thermal insulation while decreases the thermal transmittance and absorptivity of the fabric. It was concluded that double layer knitted fabrics developed with higher specific heat fibres, coarser yarn linear densities, higher knitting loop length and fabric thickness could be adequately used for winter clothing purposes.