Search Results

You are looking at 1 - 3 of 3 items

  • Author: Bengt Persson x
Clear All Modify Search


In Saccharomyces cerevisiae, the high-affinity phosphate transport system comprises the Pho84 and Pho89 permeases. The Pho89 permease catalyzes import of inorganic phosphate in a symport manner by utilizing Na+ ions as co-solute. We have addressed the functional importance of two glutamic acid residues at positions 55 and 491. Both residues are highly conserved amongst members of the inorganic phosphate transporter (PiT) family, which might be an indication of functional importance. Moreover, both residues have been shown to be of critical importance in the hPit2 transporter. We have created site-directed mutations of both E55 and E491 to lysine and glutamine. We observed that in all four cases there is a dramatic impact on the transport activity, and thus it seems that they indeed are of functional importance. Following these observations, we addressed the membrane topology of this protein by using several prediction programs. TOPCONS predicts a 7-5 transmembrane segment organization, which is the most concise topology as compared to the hPiT2 transporter. By understanding the functionality of these residues, we are able to correlate the Pho89 topology to that of the hPiT2, and can now further analyze residues which might play a role in the transport activity.


Images obtained by scanning electron microscopy (SEM) helped to clarify the question as to how anatomy influences the deformation on compression and the springback of densified wood on water soaking. Transverse sections of Norway spruce (Picea abies), Scots pine (Pinus sylvestris), black alder (Alnus glutinosa), Swedish aspen (Populus tremula), European birch (Betula pubescens), European beech (Fagus sylvatica) and pedunculate oak (Quercus robur) were studied. Wood is reinforced with rays in the radial direction and with dense latewood in the tangential direction. When strained radially, rays buckle or tilt tangentially. Softwoods were mainly compressed radially, owing to low number of rays and since latewood is much denser than earlywood. The diffuse-porous hardwoods with low density variation between latewood and earlywood were mainly deformed tangentially, except birch, which has high density at the annual ring border and is mainly compressed radially. The ring-porous hardwoods were relatively equally deformed in the radial and tangential directions because of the high number of rays and high latewood density. Moisture-induced springback (shape recovery) was proportional to the degree of compression. Rays remained deformed, which also influenced the surrounding wood. Longitudinal wood cells almost resumed their original shape. Wood with low density and a low degree of compression showed the highest structural recovery. Shearing deformation was particularly pronounced and permanent in woods with high strength anisotropy. Thin-walled and sheared cells, such as earlywood in softwood, tended to crack on compression. Cracks usually stopped at the middle lamella and had a lesser influence on strength properties than for lumen-to-lumen cracks.