Search Results

You are looking at 1 - 4 of 4 items

  • Author: C. Fernández-Pineda x
Clear All Modify Search

Abstract

Much research has been conducted to identify sources of genetic resistance to sunflower broomrape (Orobanche cumana Wallr.) and to study their mode of inheritance. However, studies on the parasite have been scarce. This manuscript reviews three genetic studies in sunflower broomrape. First, the inheritance of the absence of pigmentation in a natural mutant of this species with yellow plant color phenotype was studied. In a first stage, lines from the unpigmented mutant and a normally pigmented population were developed by several generations of self-pollination. Plants of both lines were crossed and the F1, F2, and F3 generations were evaluated. The results indicated that plant pigmentation is controlled by a partially dominant allele at a single locus. Second, the unpigmented mutant was used to evaluate outcrossing potential of the species. Two experiments in which single unpigmented plants were surrounded by normally pigmented plants were conducted under pot and field conditions. The cross-fertilization rate was estimated as the percentage of F1 hybrids in the progenies of unpigmented plants, which averaged 21.5% in the pot and 28.8% in the field experiment. The results indicated that, under the conditions of this study, the species was not strictly self-pollinated. Finally, the inheritance of avirulence was studied in crosses of plants from lines of O. cumana races E and F, developed by several generations of self-pollination. The F1 and F3 generations were evaluated on the differential line P-1380 carrying the race-E resistance gene Or5. The results suggested that race E avirulence and race F virulence on P-1380 are allelic and controlled by a single locus, which confirmed the gene-for-gene theory for the O. cumana–sunflower interaction.

in Helia