Search Results

You are looking at 1 - 10 of 13 items

  • Author: Christian Ekberg x
Clear All Modify Search

The complexation of Th with α-isosaccharinate has been studied using liquid–liquid-extraction techniques. An organic phase consisting of 0.025 M acetylacetone in toluene was used with a 1.0 M NaClO4 aqueous phase kept at pH 8 in a thermostated AKUFVE unit at 25 °C. The concentration of α-isosaccharinate (ISA-) in the aqueous phase was incrementally increased and samples of equal volumes were taken from the two phases and analyzed in a liquid scintillation detector. Stability constants, β p t, for the complexation reaction Th4++p ISA-↔Th(ISA)p (4-p)+, were determined to be logβ1 25°C=12.56±5.01, logβ2 25°C=19.38+0.35/-0.95, and logβ3 25°C=21.30±0.26.

Abstract

To enable laboratory work with larger amounts of 226Ra and its decay products, e.g., 222Rn and its daughters, these need to be captured in order to avoid unnecessary alpha contamination of the laboratory work space and ventilation systems.

In this study, radon gas was pumped through a column filled with the silver exchanged zeolite called “silver exchanged molecular sieves 13X” (Ag84Na2[(AlO2)86(SiO2)106xH2O). After exposure to radon, the radioactivity of the zeolite was measured repeatedly using high resolution gamma spectrometry. It was shown that radon was captured and retained in the silver exchanged zeolite. The zeolites´ ability to retain radon was decreased by formation of metallic silver, caused by ionizing radiation. However, the zeolite was regenerated by heating and its radon capture ability was restored. The daughters of radon are not in gas phase and will hence stay on the column.

Abstract

Using liquid–liquid extraction and the AKUFVE-technique developed by the Nuclear Chemistry Department at Chalmers University of Technology, Sweden, the complex formation equilibria of hydrogen phosphate (HPO4 2−) with thorium have been studied at different temperatures (15, 25 and 35 °C), varying pH (7, 8 and 8.7) and in 1 M (Na,H)ClO4. Evaluation of the acquired solvent extraction data indicated the formation of the ThHPO4 2+, Th(HPO4)2(aq) and Th(HPO4)3 2− complexes. For Th(HPO4)2(aq) and Th(HPO4)3 2−, the logarithm of the stability constants obtained at 25 °C were 17.0±3.5 and 23.7±0.2, respectively. Only an estimate of the stability of ThHPO4 2+ could be obtained. Enthalpies and entropies of the complex formation reactions have been determined: Th(HPO4)2(aq) (ΔH=698±27 kJ mol−1, ΔS=2669±91 J mol−1 K−1) and Th(HPO4)3 2−H=499±4 kJ mol−1, ΔS=2137±12 J mol−1 K−1).

Abstract

An industrial liquid–liquid extraction process for reprocessing of spent nuclear fuel will inevitably lead to radiolysis of the phases, since the process streams contain highly radioactive species. Solvents containing one of the BTBP (6,6′-bis(5,6-dialkyl-[1,2,4]-triazin-3-yl)-2,2′-bipyridine) molecules intended for the separation of trivalent actinides (An) from lanthanides (Ln), the so called C5-BTBP, have shown a dramatic decrease in both distribution ratios and An/Ln separation factor when irradiated; hence, the molecule is highly unstable towards radiolysis.

HPLC-, APCI(+)-MS and LC-MS analyses were performed on irradiated solvents containing initially 0.005 M C5-BTBP dissolved in either hexanol or cyclohexanone. The decrease in concentration of starting molecule as well as the increase in concentration of various degradation products were studied with quantitative and semi-quantitative measurements. Structures were suggested for the degradation products produced in highest yields and these were compared to previously proposed structures for the same products.

Abstract

Several solvents for Grouped ActiNide EXtraction (GANEX) processes have been investigated at Chalmers University of Technology in recent years. Four different GANEX solvents; cyclo-GANEX (CyMe4- -BTBP, 30 vol.% tri-butyl phosphate (TBP) and cyclohexanone), DEHBA-GANEX (CyMe4-BTBP, 20 vol.% N,N-di-2(ethylhexyl) butyramide (DEHBA) and cyclohexanone), hexanol-GANEX (CyMe4-BTBP, 30 vol.% TBP and hexanol) and FS-13-GANEX (CyMe4-BTBP, 30 vol.% TBP and phenyl trifluoromethyl sulfone (FS-13)) have been studied and the results are discussed and compared in this work. The cyclohexanone based solvents show fast and high extraction of the actinides but a somewhat poor diluent stability in contact with the acidic aqueous phase. FS-13-GANEX display high separation factors between the actinides and lanthanides and a good radiolytic and hydrolytic stability. However, the distribution ratios of the actinides are lower, compared to the cyclohexanone based solvents. The hexanol-GANEX is a cheap solvent system using a rather stable diluent but the actinide extraction is, however, comparatively low.

Summary

For lanthanides and actinides, nitrate complex formation is an important factor with respect to the reprocessing of nuclear fuels and in studies that treat partitioning and transmutation/conditioning. Different techniques, including microcalorimetry, various kinds of spectroscopy, ion-exchange and solvent extraction, can be used to determine stability constants of nitrate complex formation. However, it is uncommon that all lanthanides are studied at the same time, using the same experimental conditions and technique. The strengths of the complexes are different for lanthanides and actinides, a feature that may assist in the separation of the two groups. This paper deals with nitrate complex formation of lanthanides using a solvent extraction technique. Trace amounts of radioactive isotopes of lanthanides were produced at the TRIGA Mainz research reactor and at the Institutt for Energiteknikk in Kjeller, Norway (JEEP II reactor).

The extraction of lanthanide ions into an organic phase consisting of 2,6-bis-(benzoxazolyl)-4-dodecyloxylpyridine, 2-bromodecanoic acid and tert-butyl benzene as a function of nitrate ion concentration in the aqueous phase was studied in order to estimate the stability constants of nitrate complex formation. When the nitrate ion concentration is increased in the aqueous phase, the nitrate complex formation starts to compete with the extraction of metal ions. Thus the stability constants of nitrate complex formation can be estimated by measuring the decrease in extraction and successive fitting of an appropriate model.

Extraction curves for La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy, Ho and Er were obtained and stability constants for their nitrate complex formation were estimated. Tb, Tm, Yb and Lu were also investigated, but no stability constants could be determined. The distribution ratios for the metal ions at low nitrate ion concentration were obtained at the same time, showing the effect of lanthanide contraction resulting in decreasing extraction along the series. A clear tetrad effect in the lanthanide group was also found.

Abstract

Spent nuclear fuel contains many highly radioactive species; hence solvents used in reprocessing will be subjected to radiolysis. In this study, solvents containing one of the BTBP molecules intended for the separation of trivalent actinides and lanthanides, the so called C5-BTBP, have been subjected to radiolysis and hydrolysis. We present here that this compound shows a dramatic decrease in both distribution ratios and separation factor when irradiated with higher doses up to 50 kGy; particularly in the presence of an aqueous phase. Furthermore, fast hydrolytic degradation is observed, which significantly contributes to the overall degree of decomposition. This is supported by speciation studies performed by HPLC and LC-MS methods. Proposed structures of the highest-yield degradation products are presented and they seem to confirm previously drawn structures for these products. From these studies it can be concluded that the presence of nitric acid or nitrate during irradiation leads to higher content of species containing keto groups.

Low doses of gamma radiation were given to four different solvents containing C5-BTBP and CyMe4-BTBP, each molecule dissolved both in cyclohexanone and hexanol. Four corresponding solvents were kept unirradiated and used as references for the extraction experiments. Multiple samples were taken from both the irradiated solutions and the reference solutions at certain time intervals. The samples were used in extraction experiments with the radionuclides 241Am and 152Eu. The protection against radiolysis of the extracting molecules by the diluent used for dissolution without adding a scavenger molecule was checked. The interplay between the diluent and the side group of the extracting molecule for protection against radiolysis was also studied by keeping the same type of core molecule for binding to the metal ions and varying the diluent and side group.

The results were unexpected. The presence of a cyclic molecule as both a side group or diluent seems to keep the extraction of europium almost unaffected by radiolysis, while americium behaves differently from solvent to solvent. The diluent alone does not protect the extracting molecule. In some of the studied systems there is a distinct change in the extraction behaviour of Am between the irradiated and reference solutions, an effect that is however only present at the beginning of the experimental series. At later times the difference in distribution ratios between the irradiated and reference solution is constant. This phenomenon is found only when the side group and diluent are structurally dissimilar.

Abstract

The highly selective nitrogen donor ligand CyMe4BTBP for An(III) separation by solvent extraction was irradiated in a 60Co γ-source under varying conditions. Organic solutions of 10 mmol/L ligand in 1-octanol were contacted with different concentrations of nitric acid to observe the influence of an aqueous phase during irradiation. In subsequent liquid-liquid extraction experiments, distribution ratios of 241Am and 152Eu were determined. Distribution ratios decreased with increasing absorbed dose when irradiation was performed in the absence of nitric acid. With addition of nitric acid, initial distribution ratios remained constant over the whole examined dose range up to 300 kGy. For qualitative determination of radiolysis products, HPLC-MS measurements were performed. The protective effect of nitric acid was confirmed, since in samples irradiated with acid contact, no degradation products were observed, but only addition products of the 1-octanol molecule to the CyMe4BTBP molecule.

Abstract

The recently developed ligand MF2-BTBP dissolved in cyclohexanone is a promising solvent for the group separation of trivalent actinides(III) from the lanthanides(III). Its high stability against nitric acid has been demonstrated recently. Since the solvent is also exposed to a continuously high radiation level in the counter current process, the radiolytic stability of the solvent was examined in this study. Irradiation experiments were carried out up to an absorbed dose of 100 kGy and the effect of the dose rate was investigated. The extraction behaviour for An(III)/Ln(III) separation was studied after radiolysis for evaluation. It was found that during high dose rate irradiation the extraction efficiency for both Am(III) and Eu(III) decreased significantly with increasing absorbed dose, whereas during the low dose rate irradiation the extraction efficiencies remained more or less at the same level.