Search Results

You are looking at 1 - 4 of 4 items

  • Author: Christian Klukas x
Clear All Modify Search

Summary

This work presents a sophisticated information system, the Integrated Analysis Platform (IAP), an approach supporting large-scale image analysis for different species and imaging systems. In its current form, IAP supports the investigation of Maize, Barley and Arabidopsis plants based on images obtained in different spectra.

Several components of the IAP system, which are described in this work, cover the complete end-to-end pipeline, starting with the image transfer from the imaging infrastructure, (grid distributed) image analysis, data management for raw data and analysis results, to the automated generation of experiment reports.

Abstract

Increasingly, research focus in the fields of biology and medicine moves from the investigation of single phenomena to the analysis of complex cause and effect relationships. The clarification of complicated relationships requires the consideration of different domains, such as gene expression, protein, and metabolite data. Furthermore, it is often sensible not to analyze the collected data in isolation, but to consider the context of relevant biological networks. In this paper newly developed functionalities of the VANTED system are presented. They allow users from medicine and biology to interactively structure extensive experimental data, to filter, to evaluate, and to visualize the data and the analysis results in the context of biological networks and classification hierarchies.

Abstract

Biological networks can be large and complex, often consisting of different sub-networks or parts. Separation of networks into parts, network partitioning and layouts of overview and sub-graphs are of importance for understandable visualisations of those networks. This article presents NetPartVis to visualise non-overlapping clusters or partitions of graphs in the Vanted framework based on a method for laying out overview graph and several sub-graphs (partitions) in a coordinated, mental-map preserving way.

Summary

Crop plants play a major role in human and animal nutrition and increasingly contribute to chemical or pharmaceutical industry and renewable resources. In order to achieve important goals, such as the improvement of growth or yield, it is indispensable to understand biological processes on a detailed level. Therefore, the well-structured management of fine-grained information about metabolic pathways is of high interest. Thus, we developed the MetaCrop information system, a manually curated repository of high quality information concerning the metabolism of crop plants. However, the data access to and flexible export of information of MetaCrop in standard exchange formats had to be improved. To automate and accelerate the data access we designed a set of web services to be integrated into external software. These web services have already been used by an add-on for the visualisation toolkit VANTED. Furthermore, we developed an export feature for the MetaCrop web interface, thus enabling the user to compose individual metabolic models using SBML.