Search Results

You are looking at 1 - 3 of 3 items

  • Author: Dominique Perrin x
Clear All Modify Search

Abstract

The factors governing the brightness reversion (BR) of dissolving pulps under heat exposure are investigated. Carbonyl (CO) groups were artificially introduced on fully bleached pulp by sodium hypochlorite (NaClO) oxidation. It was demonstrated that the CO groups are responsible for loss of brightness stability (BS). These groups were partly eliminated by an alkaline extraction stage (E), which improved BS. However, an alkaline peroxide stage (P) was more efficient than E to improve BS, but without any additional CO loss. Moreover, an unbleached dissolving pulp was bleached in the laboratory by elemental chlorine free (ECF) and totally chlorine free (TCF) [ozone-based] sequences to the same brightness. The very low CO content was about the same in both cases. The ECF-bleached pulp showed substantially lower BS than the TCF pulp. These results are interpreted such that the chemistry of chromophores in the unbleached pulp also governs BS. In situ detection of phenolic and quinone chromophores in bleached dissolving pulp was performed by electron paramagnetic resonance (EPR) spectroscopy and ultraviolet resonance Raman (UVRR) spectroscopy. The content of these groups was bleaching-sequence-dependent, which may be related to the BS differences.

Abstract

We give necessary and sufficient conditions for the group of a rational maximal bifix code Z to be isomorphic with the F-group of ZF, when F is recurrent and ZF is rational. The case where F is uniformly recurrent, which is known to imply the finiteness of ZF, receives special attention. The proofs are done by exploring the connections with the structure of the free profinite monoid over the alphabet of F.

Abstract

This study intends to explain the difference in brightness stability between hardwood ECF and TCFz kraft pulps bleached by DEpDD and A(ZEo)(ZEo)(ZP) sequences respectively, using UV Resonance Raman (UVRR) spectroscopy. The brightness stability of the pulps was tested via dry aging experiments where the Post-Color Number (PCN) of the ECF pulp was twice that of the TCF pulp. The aged and non-aged bleached pulps were analyzed with UVRR spectroscopy to identify the cause of the large difference in PCN. The spectra of ECF and TCF bleached pulps presented clear differences in the intensities of the Raman shifts associated to lignin, lignin-like compounds, and degradation products such as muconic acids. To identify more specifically the compounds affecting the PCN, several post-bleaching treatments were applied on the ECF pulp including single stages (E, B, P, Z) or combinations (ZE, ZB, ZP), and their UVRR spectra analyzed. It was found that alkaline-soluble compounds were the main culprits for the difference in PCN values between ECF and TCFz pulps. ZP combination was the most efficient in eliminating residual lignin and other unsaturated components and for the development of brightness and brightness stability.