Search Results

You are looking at 1 - 3 of 3 items

  • Author: Francesco S. Pavone x
Clear All Modify Search

Abstract

GM1 and GM2 gangliosides are important components of the cell membrane and play an integral role in cell signaling and metabolism. In this conceptual overview, we discuss recent developments in our understanding of the basic biological functions of GM1 and GM2 and their involvement in several diseases. In addition to a well-established spectrum of disorders known as gangliosidoses, such as Tay-Sachs disease, more and more evidence points at an involvement of GM1 in Alzheimer’s and Parkinson’s diseases. New emerging methodologies spanning from single-molecule imaging in vivo to simulations in silico have complemented standard studies based on ganglioside extraction.

Abstract

Recent advancements in optical microscopy are challenging our understanding of the brain. In this chapter, we show the potential of optical microscopy techniques to tackle different aspects of brain structure and function, from wholebrain neuroanatomy to neural network plasticity and functionality. We will first address novel implementations of light microscopy for cellular resolution imaging of neuronal anatomy spanning the whole brain. Afterwards, we will illustrate real-time brain rewiring of single synaptic contacts visualized through two-photon microscopy in vivo. Then, the functionality of microcircuits is investigated with nonlinear microscopy combined with fluorescent indicators of neuronal activity. Nevertheless, a single technique is not enough for targeting the articulate organization of the brain; a wider view is more efficiently gained by combining complementary approaches. In the last section of this chapter, we show examples of this multiscale approach by discussing correlative imaging obtained by combining different microscopy techniques. At the end, we discuss the perspective of a wider methodological framework fusing multiple levels of brain investigation possibly leading to an omni-comprehensive view of brain machinery.

Applications in Biology and Medicine