Search Results

You are looking at 1 - 8 of 8 items

  • Author: J. Hensen x
Clear All Modify Search

Abstract

Fluorine-rich phlogopite [F content up to ~8 wt%; F/(F + OH) ~0.9] in ultra-high-temperature metapelitic granulites from the Napier Complex, East Antarctica is associated with aluminous orthopyroxene, osumilite, sapphirine, garnet, and quartz. Textural relationships imply that some of the phlogopite is of primary origin and stable under ultra-high-temperature conditions. This is in accord with recent experimental evidence on the stability of F-rich phlogopite. Because the F-rich phlogopite also occurs as rounded inclusions in aluminous orthopyroxene (Al2O3 up to 12.8 wt%), sapphirine, osumilite, and garnet, it is inferred that the ultra-high-temperature mineral assemblages, which includes these minerals formed during prograde partial melting reactions at the expense of phlogopite, at a depth of less than 30 km. Thus the coarse-grained peak metamorphic assemblages formed below 9 kbar, and there is no evidence the rocks underwent any significant degree of decompression during or soon after peak metamorphic conditions. The phlogopite breakdown reactions we suggest on the basis of textural arguments differ from those postulated from experiments on F-free systems.

Abstract

Worldwide, large areas of forest are being transformed to other land cover types and the resulting fragmented populations may suffer from restricted gene flow leading to genetic pauperization and increased inbreeding. To assess the genetic constitution of fragmented Polylepis australis mountain forests of central Argentina, analyses of the structure and diversity of ISSR markers were carried out for 90 trees distributed throughout five river basins with differing degrees of fragmentation. Overall, average polymorphism (P) ranged between 87.2 and 94.9% (95% criterion) while marker diversity index (M) varied between 0.35 and 0.39; values which are comparable with other wind-pollinated tree species. Analysis of molecular variance (AMOVA) revealed that most genetic variation occurred within river basins (97.8%), with only a little occurring between river basins (2.2%; ΦST = 0.02). In addition, Mantel’s test indicated that P. australis does not follow the usual pattern of isolation by distance; instead the UPGMA method showed that trees from the two most degraded river basins formed a group while trees from the three better preserved basins formed another. As such, either effective pollen flow has maintained high levels of genetic diversity, or present day genetic variability is a remnant of a recently fragmented ancestral panmictic population. We conclude that, at present, genetic degradation in P. australis populations of central Argentina is not as important as ecological degradation – such as soil loss, intensive browsing by livestock or increased frequencies of wildfires, and that genetic variability is still fully available for forest restoration.

Abstract

Lignin is a renewable and abundant source for production of bio-based chemicals and is a valuable alternative to crude oil to obtain aromatic building blocks. It is built from aromatic units with strong chemical linkages, which need to be cleaved to enable the use of the aromatic compounds in industrial applications. In addition to depolymerizing lignin, efficient fractionation and conversion of the resulting complex mixtures is an essential step in the valorization of lignin derivatives for different applications. In this work, we studied the separation of a lignin oil obtained by catalytic cleavage in supercritical ethanol (scEtOH) of technical lignin produced by means of soda pulping of wheat straw. The use of six commercial polymeric nanofiltration (NF) membranes and one in-house developed Grignard-functionalized ceramic membrane was investigated for the fractionation of a mixture of lignin derivatives. Separation by molecular weight (MW) was observed with the polymeric NP030 membrane but not with the other membranes tested. The development of a protocol using this membrane in the diafiltration mode for fractionation of crude lignin oils (CLOs) is discussed.