Search Results

You are looking at 1 - 2 of 2 items

  • Author: M. A. Mahajan x
Clear All Modify Search

The determination of fluoride from diverse matrices at front and back end of nuclear technology and some studies from this laboratory on optimizations of different experimental parameters differing with multiple fuels and reactor materials, have been reviewed. The most useful techniques such as fluoride ion selective electrode (F-ISE) and ion-chromatography (IC) widely adopted as routine methods for fluoride determination in nuclear industry have been discussed. The effect of various buffer strengths on the response of the fluoride ion selective electrode has been examined. The ion chromatographic studies on mobile phase concentration, medium of sample, sample injection volume etc. to get distinct fluoride peak within optimum time in presence of other anionic species in diverse concentrations have been reported. The results of various sample matrices such as UO2, PuO2, (U,Pu)O2, Pu-alloy, thoria, zircaloy, slag, HLLW, LLLW etc., analyzed after matrix separation using pyrohydrolysis setup, for both solid and liquid samples and without matrix separation by masking potentially interfering ions of liquid samples, have been presented.


The formation and growth of iodine oxide particles (IOPs), originating from molecular iodine precursor, has been studied at room temperature as a function of water vapour, and sulphuric and oxalic acid vapours. A linear variation in total IOP mass was observed over a wide range of iodine atom production rates under both dry and humid formation conditions. Particle formation was also observed in the absence of ozone, and was found to be temperature sensitive, with elevated temperatures resulting in reduced particle number and mass. Electronic structure calculations are used to show that particle formation is initiated by polymerization of I2O4 with I2O3, or with itself. Formation of IOPs in humid conditions results in lower numbers and smaller particles than formed in the absence of water vapour, because H2O forms relatively stable complexes with molecules such as I2O3 and I2O4, inhibiting their polymerization. Addition of H2O to particles formed under dry conditions shows the collapse of fractal-like, aggregate particle structures. The uptake of sulphuric acid vapour onto humidified particles was studied over a wide range of relative humidity (RH) at room temperature, with the calculated accommodation coefficient (α) for this process increasing with RH to a value of 0.75±0.05 at RH = 90%. In contrast, growth of particles exposed to oxalic acid vapour was not observed on the experimental timescales employed, indicating an upper limit for α of 10−3.