Search Results

You are looking at 1 - 10 of 12 items

  • Author: Mark A. Olson x
Clear All Modify Search

Stereochemistry—in both its static and dynamic variants—has progressed apace now for more than a century to incorporate all aspects of covalent, coordinative, and noncovalent bonding at levels of structure which encompass constitution, configuration, and conformation. The advent of the mechanical bond in more recent times is now providing opportunities for the emergence of new stereochemical tenets and concepts, some of which bear close analogies with those of days gone by in chemistry. Since terminology helps to define and disseminate a discipline, we advocate that the term “mechanostereochemistry” be used to describe the chemistry of molecules with mechanical bonds.


In this study, the effects of low consistency refining (LCR) energy and intensity on mechanical pulp properties have been studied for three different types of reject pulps (softwood TMP, softwood CTMP and hardwood CTMP), which were refined at varying intensity. Resulting pulp properties have been compared with high consistency refining (HCR) of the same reject pulps. For all furnish types, it was shown that LCR can develop pulp properties matching those developed through HCR with significantly less energy. The resulting pulp properties were found to be affected not only by refining intensity and energy, but also by initial fibre morphology. Pilot LCR trials demonstrated that high freeness reject pulp is initially insensitive to refining intensity as specific energy is applied. This enables the first stage of LCR to be carried out at a higher specific energy and intensity, which can reduce the number of stages of LCR required to reach a target quality. This work shows that low intensity LCR is capable of achieving the same tensile index as HCR pulp at a target freeness of 200 ml CSF.



Given an unacceptably high incidence of diagnostic errors, we sought to identify the key competencies that should be considered for inclusion in health professions education programs to improve the quality and safety of diagnosis in clinical practice.


An interprofessional group reviewed existing competency expectations for multiple health professions, and conducted a search that explored quality, safety, and competency in diagnosis. An iterative series of group discussions and concept prioritization was used to derive a final set of competencies.


Twelve competencies were identified: Six of these are individual competencies: The first four (#1–#4) focus on acquiring the key information needed for diagnosis and formulating an appropriate, prioritized differential diagnosis; individual competency #5 is taking advantage of second opinions, decision support, and checklists; and #6 is using reflection and critical thinking to improve diagnostic performance. Three competencies focus on teamwork: Involving the patient and family (#1) and all relevant health professionals (#2) in the diagnostic process; and (#3) ensuring safe transitions of care and handoffs, and “closing the loop” on test result communication. The final three competencies emphasize system-related aspects of care: (#1) Understanding how human-factor elements influence the diagnostic process; (#2) developing a supportive culture; and (#3) reporting and disclosing diagnostic errors that are recognized, and learning from both successful diagnosis and from diagnostic errors.


These newly defined competencies are relevant to all health professions education programs and should be incorporated into educational programs.