Search Results

You are looking at 1 - 3 of 3 items

  • Author: Miklós Pintér x
Clear All Modify Search

Abstract

Allocating risk properly to subunits is crucial for performance evaluation and internal capital allocation of portfolios held by banks, insurance companies, investment funds and other entities subject to financial risk. We show that by using coherent measures of risk it is impossible to allocate risk satisfying simultaneously the natural game theoretical requirements of Core Compatibility and Strong Monotonicity. To obtain the result we characterize the Shapley value on the class of totally balanced games and also on the class of exact games as being the only risk allocation method satisfying Strong Monotonicity, Equal Treatment Property and Efficiency. Moreover, we clarify and interpret the related game theoretical requirements that have appeared in the literature so far and have been applied to risk allocation.