Search Results

You are looking at 1 - 4 of 4 items

  • Author: N. M. Rice x
Clear All Modify Search


Background and aims

Pain is a subjective experience, and as such, pre-clinical models of human pain are highly simplified representations of clinical features. These models are nevertheless critical for the delivery of novel analgesics for human pain, providing pharmacodynamic measurements of activity and, where possible, on-target confirmation of that activity. It has, however, been suggested that at least 50% of all pre-clinical data, independent of discipline, cannot be replicated. Additionally, the paucity of “negative” data in the public domain indicates a publication bias, and significantly impacts the interpretation of failed attempts to replicate published findings. Evidence suggests that systematic biases in experimental design and conduct and insufficiencies in reporting play significant roles in poor reproducibility across pre-clinical studies. It then follows that recommendations on how to improve these factors are warranted.


Members of Europain, a pain research consortium funded by the European Innovative Medicines Initiative (IMI), developed internal recommendations on how to improve the reliability of pre-clinical studies between laboratories. This guidance is focused on two aspects: experimental design and conduct, and study reporting.


Minimum requirements for experimental design and conduct were agreed upon across the dimensions of animal characteristics, sample size calculations, inclusion and exclusion criteria, random allocation to groups, allocation concealment, and blinded assessment of outcome. Building upon the Animals in Research: Reportingin vivo Experiments (ARRIVE) guidelines, reporting standards were developed for pre-clinical studies of pain. These include specific recommendations for reporting on ethical issues, experimental design and conduct, and data analysis and interpretation. Key principles such as sample size calculation, a priori definition of a primary efficacy measure, randomization, allocation concealments, and blinding are discussed. In addition, considerations of how stress and normal rodent physiology impact outcome of analgesic drug studies are considered. Flow diagrams are standard requirements in all clinical trials, and flow diagrams for preclinical trials, which describe number of animals included/excluded, and reasons for exclusion are proposed. Creation of a trial registry for pre-clinical studies focused on drug development in order to estimate possible publication bias is discussed.


More systematic research is needed to analyze how inadequate internal validity and/or experimental bias may impact reproducibility across pre-clinical pain studies. Addressing the potential threats to internal validity and the sources of experimental biases, as well as increasing the transparency in reporting, are likely to improve preclinical research broadly by ensuring relevant progress is made in advancing the knowledge of chronic pain pathophysiology and identifying novel analgesics.


We are now disseminating these Europain processes for discussion in the wider pain research community. Any benefit from these guidelines will be dependent on acceptance and disciplined implementation across pre-clinical laboratories, funding agencies and journal editors, but it is anticipated that these guidelines will be a first step towards improving scientific rigor across the field of pre-clinical pain research.



To determine the frequency of sepsis and other adverse neonatal outcomes in women with a clinical diagnosis of chorioamnionitis.


We performed a secondary analysis of a multi-center placebo-controlled trial of vitamins C/E to prevent preeclampsia in low risk nulliparous women. Clinical chorioamnionitis was defined as either the “clinical diagnosis” of chorioamnionitis or antibiotic administration during labor because of an elevated temperature or uterine tenderness in the absence of another cause. Early-onset neonatal sepsis was categorized as “suspected” or “confirmed” based on a clinical diagnosis with negative or positive blood, urine or cerebral spinal fluid cultures, respectively, within 72 h of birth. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression.


Data from 9391 mother-infant pairs were analyzed. The frequency of chorioamnionitis was 10.3%. Overall, 6.6% of the neonates were diagnosed with confirmed (0.2%) or suspected (6.4%) early-onset sepsis. Only 0.7% of infants born in the setting of chorioamnionitis had culture-proven early-onset sepsis versus 0.1% if chorioamnionitis was not present. Clinical chorioamnionitis was associated with both suspected [OR 4.01 (3.16–5.08)] and confirmed [OR 4.93 (1.65–14.74)] early-onset neonatal sepsis, a need for resuscitation within the first 30 min after birth [OR 2.10 (1.70–2.61)], respiratory distress [OR 3.14 (2.16–4.56)], 1 min Apgar score of ≤3 [OR 2.69 (2.01–3.60)] and 4–7 [OR 1.71 (1.43–2.04)] and 5 min Apgar score of 4–7 [OR 1.67 (1.17–2.37)] (vs. 8–10).


Clinical chorioamnionitis is common and is associated with neonatal morbidities. However, the vast majority of exposed infants (99.3%) do not have confirmed early-onset sepsis.