Search Results

You are looking at 1 - 3 of 3 items

  • Author: R. A. Buda x
Clear All Modify Search

The sorption of tetravalent plutonium onto kaolinite, a clay mineral, has been studied as a function of pH. The sorption studies have been performed by batch experiments under aerobic and anaerobic conditions (glove box). A pH range of 0–11 has been investigated with plutonium concentrations of 3.5 × 10-7−6.9 × 10-9 M and a solid phase concentration of 4 g/L. A sorption edge at about pH=1 and maximum sorption around pH=8.5 has been found under aerobic and anaerobic conditions. In the presence of CO2 at pH > 8.5, the sorption of plutonium is decreased due to the formation of soluble carbonate complexes. This is supported by speciation calculations for Pu(IV)-hydroxo-carbonate species in aqueous solution. Depending on the pH, 1%−10% of the sorbed plutonium is desorbed from the kaolinite and released into the fresh solution. For comparison with the behavior of Pu(IV), the sorption of the redox-stable Th(IV) onto kaolinite has also been investigated. Furthermore, the sorption of humic substances (HS) onto kaolinite has been studied as a function of pH and for varying concentrations of HS as a prerequisite to understand the more complex ternary system: plutonium, humic substances, and clay. It has been found that the sorption of Aldrich humic acid onto kaolinite is generally higher than that for Gorleben fulvic acid.

For the speciation of the plutonium oxidation states in aqueous solutions, the online coupling of capillary electrophoresis (CE) with inductively coupled plasma mass spectrometry (ICP-MS) has been developed. Depending on the radius/electrical charge ratio, the oxidation states III, IV, V, and VI of plutonium are separated by CE, based on the different migration times through the capillary and are detected by ICP-MS. The detection limit is 20 ppb, i.e. 109–1010 atoms (10-12–10-13 g) for one oxidation state with an uncertainty of the reproducibility of the migration times of ≤1% and ≤5% for the peak area. The redox kinetics of the different plutonium oxidation states in the presence of humic substances (humic and fulvic acid) have been studied. A relatively rapid reduction of Pu(VI) (10 to 1000 h) in contact with Gorleben fulvic or Aldrich humic acid could be observed, depending on the pH of the solution. Furthermore, at pH=1, a reduction to Pu(III) and Pu(IV) in a mixture of all four oxidation states in contact with Gorleben fulvic acid after one month has been observed. In order to improve the sensitivity of the CE method, the offline coupling of CE to resonance ionization mass spectrometry (RIMS) has been explored. First applications of this new speciation method are presented.


Two experiments aiming at the chemical investigation of element 112 produced in the heavy ion induced nuclear fusion reaction of 48Ca with 238U were performed at the Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany. Both experiments were designed to determine the adsorption enthalpy of element 112 on a gold surface using a thermochromatography setup. The temperature range covered in the thermochromatography experiments allowed the adsorption of Hg at about 35 °C and of Rn at about -180 °C. Reports from the Flerov Laboratory for Nuclear Reactions (FLNR), Dubna, Russia claim production of a 5-min spontaneous fission (SF) activity assigned to 283112 for the 238U(48Ca,3n) 283112 reaction. Hence, Experiment I was designed to detect spontaneously fissioning (SF) isotopes of element 112 with half-lives (t 1/2) longer than about 20 s. 11 high-energy events were detected. 7 events exhibit a deposition pattern resembling a chromatographic peak in the vicinity of Rn deposition. However, the energy of the events observed in Experiment I was lower than expected for a SF-decay of 283112. Therefore, these events could not be unambiguously attributed to the decay of 283112. In contradiction with earlier publications newer reports from FLNR Dubna claim that 283112 decays by α-particle emission (E α = 9.5 MeV) with t 1/2 = 4 s followed by a SF-decay of 279Ds (t 1/2 = 0.2 s). Therefore, Experiment II was designed to be sensitive to both claimed decay properties of 283112. However, during this experiment neither short α-SF correlations nor SF coincidences were detected. The conclusion is that 283112 was not unambiguously detected, neither in Experiment I nor in Experiment II.