Search Results

You are looking at 1 - 2 of 2 items

  • Author: S. Besombes x
Clear All Modify Search


The control of single spins in solids is a key but challenging step for any spin-based solid-state quantumcomputing device. Thanks to their expected long coherence time, localized spins on magnetic atoms in a semiconductor host could be an interesting media to store quantum information in the solid state. Optical probing and control of the spin of individual or pairs of Manganese (Mn) atoms (S = 5/2) have been obtained in II-VI and IIIV semiconductor quantum dots during the last years. In this paper, we review recently developed optical control experiments of the spin of an individual Mn atoms in II-VI semiconductor self-assembled or strain-free quantum dots (QDs).We first show that the fine structure of the Mn atom and especially a strained induced magnetic anisotropy is the main parameter controlling the spin memory of the magnetic atom at zero magnetic field. We then demonstrate that the energy of any spin state of a Mn atom or pairs of Mn atom can be independently tuned by using the optical Stark effect induced by a resonant laser field. The strong coupling with the resonant laser field modifies the Mn fine structure and consequently its dynamics.We then describe the spin dynamics of a Mn atom under this strong resonant optical excitation. In addition to standard optical pumping expected for a resonant excitation, we show that the Mn spin population can be trapped in the state which is resonantly excited. This effect is modeled considering the coherent spin dynamics of the coupled electronic and nuclear spin of the Mn atom optically dressed by a resonant laser field. Finally, we discuss the spin dynamics of a Mn atom in strain-free QDs and show that these structures should permit a fast optical coherent control of an individual Mn spin.


The conformational preferences of the threo and erythro diastereomeric forms of a guaiacyl β-O-4 dimer have been investigated by molecular modeling using the CHARMM force field. Many low energy conformations have been identified for each diastereomer, showing that β-O-4 dimers can adopt a large variety of shapes. A consistent structural model has emerged that indicates different conformational behavior for the threo and erythro forms, corresponding to a preferential extended overall shape for the threo form. All the low energy conformers are stabilized by intramolecular H-bonds. In particular, the highly directional H-bond between the α or γ hydroxyl hydrogen and the aromatic methoxy oxygen governs the B aromatic ring orientation. However, it has appeared that the conformational preferences are predominantly governed by local steric interactions rather than by differences in the H-bonding pattern. From the satisfactory agreement between computed data (geometries and the Boltzmann distribution of the low energy conformers) and the experimental data reported in the literature (X-ray crystal structures and 3 J HαHβ NMR coupling constant), the CHARMM force field has been validated for the study of β-O-4 structures. Clearly, the molecular modeling calculations have led to an improved rationalization of the conformational data collected by experimental techniques.