Search Results

You are looking at 1 - 2 of 2 items

  • Author: Tobias Kersten x
Clear All Modify Search

Abstract

The research project SIMULTAN applies an advanced combination of geophysical, geodetic, and modelling techniques to gain a better understanding of the evolution and characteristics of sinkholes. Sinkholes are inherently related to surface deformation and, thus, of increasing societal relevance, especially in dense populated urban areas. One work package of SIMULTAN investigates an integrated approach to monitor sinkhole-related mass translations and surface deformations induced by salt dissolution. Datasets from identical and adjacent points are used for a consistent combination of geodetic and geophysical techniques. Monitoring networks are established in Hamburg and Bad Frankenhausen (Thuringia). Levelling surveys indicate subsidence rates of about 4–5 mm per year in the main subsidence areas of Bad Frankenhausen with a local maximum of 10 mm per year around the leaning church tower.

Here, the concept of combining geodetic and gravimetric techniques to monitor and characterise geological processes on and below the Earth's surface is exemplary discussed for the focus area Bad Frankenhausen. For the different methods (levelling, GNSS, relative/absolute gravimetry) stable network results at identical points are obtained by the first campaigns, i.e., the results are generally in agreement.

Abstract

Global satellite navigation systems (GNSS) are a standard measurement device for deformation monitoring. In many applications, double-differences are used to reduce distance dependent systematic effects, as well as to eliminate the receiver and satellites clock errors. However, due to the navigation principle of one way ranging used in GPS, the geometry of the subsequent adjustment is weakened. As a result, the height component is generally determined three times less precisely than the horizontal coordinates. In addition, large correlations between the height and elevation dependent effects exist such as tropospheric refraction, mismodelled phase center variations, or multipath which restricts the attainable accuracy. However, for a kinematic analysis, i. e. for estimating high rate coordinate time series, the situation can be significantly improved if a common clock is connected to different GNSS receivers in a network or on a baseline. Consequently, between-station single-differences are sufficient to solve for the baseline coordinates. The positioning geometry is significantly improved which is reflected by a reduction of the standard deviation of kinematic heights by about a factor 3 underlining the benefits of this new approach. Real data from baselines at the Physikalisch-Technische Bundesanstalt campus at Braunschweig where receivers are connected over 290 m via an optical fiber link to a common clock was analysed.