Search Results

You are looking at 1 - 3 of 3 items

  • Author: Y. Kitamoto x
Clear All Modify Search


Trivalent actinides Am(III), Cm(III), and Cf(III) were successfully separated for the first time using capillary electrophoresis in 2-hydroxyisobutyric acid/acetic acid. It was found that the ionic radius was primarily important for separation of trivalent actinides as well as lanthanides in this condition. The stability constants of the Am(III) complexes with 2-hydroxyisobutyrate were estimated using the correlations between the molar fraction ratio of lanthanides and their ionic radii.


Formation of anionic fluoride-complexes of element 104, rutherfordium, produced in the 248Cm(18O,5n) 261Rf reaction was studied by anion-exchange on an atom-at-a-time scale. It was found that the hexafluoro complex of Rf, [RfF6]2−, was formed in the studied fluoride ion concentrations of 0.0005–0.013 M. Formation of [RfF6]2− was significantly different from that of the homologues Zr and Hf, [ZrF6]2− and [HfF6]2−; the evaluated formation constant of [RfF6]2− is at least one-order of magnitude smaller than those of [ZrF6]2− and [HfF6]2−.

The extraction behavior of rutherfordium (Rf) into tributylphosphate (TBP) from hydrochloric acid (HCl) has been studied together with those of the lighter group-4 elements Zr and Hf. The extractability of 261Rf, 169Hf, and 85Zr into TBP was investigated under identical conditions in 7.2–8.0 M HCl by on-line reversed-phase extraction chromatography. The percent extractions of Rf, Hf, and Zr into the TBP resin increase steeply with increasing HCl concentration, and the order of extraction is Zr > Hf ≈ Rf. By considering the order of chloride complexation among these elements, it is suggested that the stability of the TBP complex of Rf tetrachloride is lower than those of Zr and Hf.