Search Results

You are looking at 1 - 10 of 73 items :

Clear All

Abstract

Let k be an arbitrary field and Q a tame quiver of type ˜D4. Consider the path algebra kQ and the category of finite dimensional right modules mod-kQ. We determine the Hall polynomials Fxyz associated to indecomposable modules of defect ∂z =−2, ∂x = ∂y =−1 or dually ∂z = 2, ∂x = ∂y = 1.

wonder the relationship (if any) between these two notions. In this paper we show that there are plenty of locally finitely presented categories having no other categorical flats than the zero object. As particular instance, we show that Qcoh.Pn.R// has no other categorical flat objects than zero, where R is any commutative ring. Keywords. Locally finitely presented category, Grothendieck category, flat object, quasi-coherent sheaf, projective scheme, quiver representation. 2010 Mathematics Subject Classification. 18E15, 18C35, 18F20, 18A40, 16G20. 1 Introduction It is

Abstract

Bimodules over triangular Nakayama algebras that give stable equivalences of Morita type are studied here. As a consequence one obtains that every stable equivalence of Morita type between triangular Nakayama algebras is a Morita equivalence.

Abstract

Let Λ be a finite dimensional algebra over an algebraically closed field k and Λ has tame representation type. In this paper, the structure of Hom-spaces of all pairs of indecomposable Λ-modules having dimension smaller than or equal to a fixed natural number is described, and their dimensions are calculated in terms of a finite number of finitely generated Λ-modules and generic Λ-modules. In particular, such spaces are essentially controlled by those of the corresponding generic modules.

Abstract

In this article, we survey recent work on the construction and geometry of representations of a quiver in the category of coherent sheaves on a projective algebraic manifold. We will also prove new results in the case of the quiver • ← • → •.

Abstract

In the paper, we introduce a wide class of domestic finite dimensional algebras over an algebraically closed field which are obtained from the hereditary algebras of Euclidean type , n≥1, by iterated one-point extensions by two-ray modules. We prove that these algebras are domestic and their Auslander-Reiten quivers admit infinitely many nonperiodic connected components with infinitely many orbits with respect to the action of the Auslander-Reiten translation. Moreover, we exhibit a wide class of almost sincere domestic simply connected algebras of large global dimensions.

Abstract

Given a convex algebra ∧0 in the tame finite-dimensional basic algebra ∧, over an algebraically closed field, we describe a special type of restriction of the generic ∧-modules.

Abstract

We consider a class of algebras whose Auslander-Reiten quivers have starting components that are not generalized standard. For these components we introduce a generalization of a slice and show that only in finitely many cases (up to isomorphism) a slice module is a tilting module.

Abstract

Let $$\mathbb{K}$$ be an algebraically closed field. Consider a finite dimensional monomial relations algebra $$\Lambda = {{\mathbb{K}\Gamma } \mathord{\left/ {\vphantom {{\mathbb{K}\Gamma } I}} \right. \kern-\nulldelimiterspace} I}$$ of finite global dimension, where Γ is a quiver and I an admissible ideal generated by a set of paths from the path algebra $$\mathbb{K}\Gamma $$ . There are many modules over Λ which may be represented graphically by a tree with respect to a top element, of which the indecomposable projectives are the most natural example. These trees possess branches which correspond to right subpaths of cycles in the quiver. A pattern in the syzygies of a specific factor module of the corresponding indecomposable projective module is found, allowing us to conclude that the square of any cycle must lie in the ideal I.

Abstract

Trivial extensions of a certain subclass of minimal 2-fundamental algebras are examined. For such algebras the characterization of components of the Auslander-Reiten quiver which contain indecomposable projective modules is given.