Search Results

You are looking at 1 - 10 of 34 items :

  • "Ammonia-Oxidizing Bacteria" x
Clear All

Susceptibility of Ammonia-Oxidizing Bacteria to Nitrification Inhibitors Douchi Matsubaa*, Hirotoshi Takazakia, Yukiharu Satoa, Reiji Takahashib, Tatsuaki Tokuyamab, and Ko Wakabayashia* a Graduate School of Agricultural Science, Tamagawa University, Tamagawa-Gakuen, Machida-shi, Tokyo 194-8610, Japan. Fax: +81-42-739-8854. E-mail: kwaka@agr.tamagawa.ac.jp b Department of Agricultural and Biological Chemistry, College of Bioresource Sciences, Nihon University, Fujisawa-shi, Kanagawa 252-8510, Japan * Authors for correspondence and reprint requests Z. Naturforsch

-Jurczyk, J. & Różalska, P. (2011). Dynamika ilościowa AOB w procesie biologicznego oczyszczania odcieków składowiskowych w warunkach beztlenowych, Inżynieria i Ochrona Środowiska, 14, 4, 309–322. [4] Kowalchuk, G.A., Stephen, J.R., De Boer, W., Prosser, J.I., Embley, T.M. & Woldendorp, J.W. (1997). Analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplifi ed 16S ribosomal DNA fragments, Applied and Environmental Microbiology, 63, 4, 1489–1497. [5

: 0099-2240/97/04.00. [14] Ziembińska A, Ciesielski S, Miksch K. Ammonia oxidizing bacteria community in activated sludge monitored by denaturing gradient gel electrophoresis (DGGE), J Gen Appl Microbiol. 2009;55:375-380. DOI:10.2323/jgam.55.373. [15] Magurran AE. Ecological Diversity and its Measurement. Cambrige: University Press; 1988. [16] Olsson O, Weichgrebe D, Rosenwinkel KH. Hydraulic fracturing: Zusammensetzung und entsorgung anfallender abwässer (Hydraulic fracturing: composition and disposal of incurred wastewater). Wasser Abfall. 2012;14(9):10-15. DOI: 10

Abstract

Drinking Water Distribution Systems (DWDSs) play a key role in sustainable development of modern society. They are classified as critical infrastructure systems. This imposes a large set of highly demanding requirements on the DWDS operation and requires dedicated algorithms for on-line monitoring and control to tackle related problems. Requirements on DWDS availability restrict the usability of the real plant in the design phase. Thus, a proper model is crucial. Within this paper a DWDS multi-species quality model for simulation and design is derived. The model is composed of multiple highly inter-connected modules which are introduced to represent chemical and biological species and (above all) their interactions. The chemical part includes the processes of chloramine decay with additional bromine catalysis and reaction with nitrogen compounds. The biological part consists of both heterotrophic and chemo-autotrophic bacteria species. The heterotrophic bacteria are assumed to consume assimilable organic carbon. Autotrophs are ammonia oxidizing bacteria and nitrite oxidizing bacteria species which are responsible for nitrification processes. Moreover, Disinfection By-Products (DBPs) are also considered. Two numerical examples illustrate the derived model’s behaviour in normal and disturbance operational states.

REFERENCES ARAUJO, A.S.F., SANTOS, V.B., MONTEIRO, R.T.R.: Responses of soil microbial biomass and activity for practices of organic and conventional farming systems in Piauí state. Brazil. European Journal of Soil Biology , 44: 225-230, 2008. BRIONES, A.M., OKABE, S., UMEMIYA, Y., RAMSING, N., REICHARDT, W., OKUYAMA, H.: Influence of different cultivars on populations of ammonia-oxidizing bacteria in the root environment of rice. Applied Environmental Microbiology, 68: 3067–3075, 2002. BROECKLING, C.D., BROZ, A.K., BERGELSON, J., MANTER, D.K., VIVANCO, J

. (2009). Ammonia oxidizing bacteria community in activated sludge monitored by denaturing gradient gel electrophoresis (DGGE), Journal of General and Applied Microbiology , 55, pp. 373–380.

on activated sludge microfauna, Water Research , 39, pp. 4397–4404. Ukropec, R., Kuster, B.F.M., Schouten, J.C. & van Santen, R.A. (1999). Low temperature oxidation of ammonia to nitrogen in liquid phase, Applied Catalysis B: Environmental , 23, pp. 45–57. Wagner, M., Rath, G., Amann, R., Koops H.-P. & Schleifer, K.-H. (1995). In situ identification of ammonia-oxidizing bacteria, Systematic and Applied Microbiology , 18, pp. 251–264.

management practices with high risk of nitrate contamination in agricultural areas of southern Spain. In Acta Horticulturae, vol. 563, pp. 73‒80. GONG, P. ‒ ZHANG, L. ‒ WU, Z. ‒ SHANG, Z. ‒ LI, D. 2013. Does the nitrification inhibitor dicyandiamide affect the abundance of ammonia-oxidizing bacteria and archaea in Hap-Udic Luvisol? In Journal of Soil Science and Plant Nutrition, vol. 13, no. 1, pp. 35‒42. HUBER, D. ‒ WARREN, H. ‒ NELSON, D. ‒ TSAI, C. 1977. Nitrification inhibitors: new tools for food production. In BioSience, vol. 27, no. 8, pp. 523‒529. CHEN, Y

hazard of oil shale combustion fly ash. J Hazard Mater 2012;229-230:192-200. doi: 10.1016/j.jhazmat.2012.05.095 19. Nester EW, Anderson DG, Evans Roberts Jr. C, Pearsall NN, Nester MT. Microbiology: A Human Perspective. 4th ed. New York: The McGraw-Hill Companies, Inc.; 2004. 20. Sorokin DY, Tourova TP, Schmid M, Wagner M, Koops HP, Kuenen JG, Jetten M. Isolation and properties of obligately chemolitoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes. Arch Microbiol 2001;176:170-7. doi: 10.1007/ s002030100310 21. Sorokin DY

139: 69–76. http://dx.doi.org/10.1016/j.cattod.2008.08.024 [4] Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2013. GenBank. Nucleic Acids Res. 41(Database issue): D36–D42. http://dx.doi.org/10.1093/nar/gks1195 [5] Cao H., Hong Y., Li M. & Gu J.D. 2012. Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea. Appl. Microbiol. Biotechnol. 94: 247–259. http://dx.doi.org/10.1007/s00253-011-3636-1 [6] Castle D.M., Montgomery M.T. & Kirchman D