Search Results

You are looking at 1 - 1 of 1 items :

  • "d-cluster tilting subcategory" x
Clear All

Abstract

This paper shows a new phenomenon in higher cluster tilting theory. For each positive integer d, we exhibit a triangulated category 𝖢 with the following properties.

On the one hand, the d-cluster tilting subcategories of 𝖢 have very simple mutation behaviour: Each indecomposable object has exactly d mutations. On the other hand, the weakly d-cluster tilting subcategories of 𝖢 which lack functorial finiteness can have much more complicated mutation behaviour: For each 0 ≤ ℓ ≤ d - 1, we show a weakly d-cluster tilting subcategory 𝖳 which has an indecomposable object with precisely ℓ mutations.

The category 𝖢 is the algebraic triangulated category generated by a (d + 1)-spherical object and can be thought of as a higher cluster category of Dynkin type A .