Search Results

You are looking at 1 - 10 of 5,162 items :

  • "energy transfer" x
Clear All

dielectric properties of the environment have a direct impact on the emission properties of a fluorescing molecule. The situation becomes even more complex for structured environments, such as interfaces [ 2 ], [ 3 ], cylindrical nanocavities (zero mode waveguides) [ 4 ], [ 5 ], or spherical nanocavities [ 6 ], [ 7 ]. Another well-known example is Förster resonance energy transfer (FRET) [ 8 ], [ 9 ], where the electromagnetic near-field coupling between a donor and an acceptor molecule leads to a dramatic change of the radiative decay rate of the donor. In the 1960s and

Energy Transfer Inhibition Induced by Nitrofen Bernhard Huchzermeyer Botanisches Institut, Arbeitsgruppe für Biochemie der Pflanzen, Tierärztliche Hochschule, Bünte­ weg 17d, D-3000 Hannover, Bundesrepublik Deutschland Z. Naturforsch. 37 c, 787-792 (1982); received April 30/June 8, 1982 Herbicides, Nitrofen, Energy Transfer Inhibition, Photophosphorylation, N ucleotide Exchange The herbicide nitrofen was shown to act as an energy transfer inhibitor. The results proved nitrofen to act by inhibiting nucleotide exchange on the chloroplast coupling factor. A strong

Bidirectional Photoinduced Energy Transfer in Nanoassemblies of Quantum Dots and Luminescent Metal Complexes Srinidhi Ramachandraa, Cristian Alejandro Strassertb, David N. Reinhoudta, Daniel Vanmaekelberghc, and Luisa De Colaa,b,d a Laboratory of Supramolecular Chemistry and Technology, and MESA+ Institute of Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands b Physikalisches Institut and Center for Nanotechnology (CeNTech) Westfälische Wilhelms- Universität Münster, Heisenbergstraße11, D-48149 Münster, Germany c Condensed

1035 Pure Appl. Chem., Vol. 77, No. 6, pp. 1035–1050, 2005. DOI: 10.1351/pac200577061035 © 2005 IUPAC Electronic energy transfer in dinuclear metal complexes containing meta-substituted phenylene units* A. D’Aléo, S. Welter, E. Cecchetto, and L. De Cola‡ Universiteit van Amsterdam, HIMS, Nieuwe Achtergracht, 166, 1018 WV Amsterdam, The Netherlands Abstract: The synthesis and photophysical properties of heterometallic dinuclear complexes based on ruthenium and osmium trisbipyridine units, Ru-mPh3-Os and Ru-mPh5-Os, in which the metal complexes are linked via an

. 72 , 2577 (1998). 62 V.Švrček, H. Fujiwara, M. Kondo. Sol. Energy Mater. Sol. Cells 93 , 774 (2009). 63 10.1016/S0379-6779(01)00444-1 , D. S. Ginger, N. C. Greenham. Synth. Met. 124 , 117 (2001). 64 Th. Förster. Ann. Phys. (N.Y.) 2 , 55 (1948). 65 D. L. Andrews, A. A. Demidov. Resonance Energy Transfer , John Wiley, Chichester (1999). 66 10.1039/df9592700007 , T. Förster. Discuss. Farraday Soc. 27 , 7 (1959). 67 10.1063/1.1755414 , T. W. F. Chang, S. Musikhin, L. Bakueva, L. Levina, M. A. Hines, P. W. Cyr, E. H. Sargent. Appl. Phys. Lett. 84 , 4295 (2004). 68

Energy Transfer within PC Trimers of Mastigocladus laminosus Studied by Picosecond Time-Resolved Transient Absorption Spectroscopy S. Schneider and P. Geiselhart Institut für Physikalische und Theoretische Chemie der Technischen Universität München, Lichtenbergstraße 4, D-8046 Garching, Bundesrepublik Deutschland S. Siebzehnrübl, R. Fischer, and H. Scheer Botanisches Institut der Ludwig-Maximilians-Universität. Menzinger Straße 67, D-8000 München 19, Bundesrepublik Deutschland Z. Naturforsch. 43c, 5 5 - 6 2 (1988); received July 2/October 12, 1987

References [1] Clayton, R.K., Photosynthesis: physical mechanisms and chemical patterns. Cambridge University Press. Cambridge, 1980. [2] Lakowicz, J.R., Principles of fluorescence spectroscopy. Kluwer/Plenum Publishers. New York, 2006. [3] Helms, V., Fluorescence Resonance Energy Transfer. Principles of Computational Cell Biology. Wiley-VCH. Weinheim, 2008. [4] Förster, Th., Transfer mechanisms of electronic excitation. Discussions of the Faraday Society 27 , 1959, 7-17. [5] Ibrayev, N., Seliverstova, E., Aimukhanov, A., Serikov, T., Role of energy transfer in

requirement for the implementation of such a hybrid materials in practical photonic nanodevices is the understanding of mechanisms of energy transfer and conversion on the nanoscale, which in this work will be studied using absorption and fluorescence spectroscopy, fluorescence lifetime imaging and photon correlation spectroscopy. Various approaches to form hybrid structures were developed in last decades. The most robust one is based on covalent binding of dye molecules to single QDs [ 13 ]. Another one uses electrostatic interaction between oppositely charged chemical

1 Introduction Radiationless transfer of electronic excitation energy is a fundamental physical phenomenon playing an important role in natural processes, especially in photosynthesis, and is commonly used in photooptics, optoelectronics, biochemistry, coordination chemistry of transition metals, lanthanides, and in luminescent analysis. Energy transfer (ET) assumes a presence of a donor absorbing the light and an acceptor receiving the absorbed and transformed energy from the donor to emit it later. Excitation ET may take place within one molecule, which has two

Biol. Chem., Vol. 392, pp. 135–142, January/February 2011 • Copyright by Walter de Gruyter • Berlin • New York. DOI 10.1515/BC.2011.001 2011/237 Article in press - uncorrected proof Review Single-molecule fluorescence resonance energy transfer techniques on rotary ATP synthases Michael Börsch Third Institute of Physics, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany e-mail: m.boersch@physik.uni-stuttgart.de Abstract Conformational changes of proteins can be monitored in real time by fluorescence resonance energy transfer (FRET). Two