Search Results

You are looking at 1 - 10 of 899 items :

  • "polyaniline" x
Clear All

[1] Ambrosi, A., Morrin, A., Smyth, M. R., & Killard, A. J. (2008). The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid. Analytica Chimica Acta, 609, 37–43. DOI: 10.1016/j.aca.2007.12.017. http://dx.doi.org/10.1016/j.aca.2007.12.017 [2] Casella, I. G., & Guascito, M. R. (1997). Electrocatalysis of ascorbic acid ion the glassy carbon electrode chemically modified with polyaniline films. Electroanalysis, 9, 1381–1386. DOI: 10.1002/elan.1140091802. http://dx.doi.org/10.1002/elan.1140091802 [3] Chen, F., & Liu, P. (2011

Z. Phys. Chem. 225 (2011) 373–378 / DOI 10.1524/zpch.2011.0047 © by Oldenbourg Wissenschaftsverlag, München Electrochemical Patterning of Polyaniline on Insulating Substrates By Nikolai Gaponik1,∗, Dmitry G. Shchukin2, and Dmitry V. Sviridov3 1 Physical Chemistry, TU Dresden, 01062 Dresden, Germany 2 MPI of Colloids and Interfaces, 14424 Potsdam, Germany 3 Department of Chemistry, Belarussian State University, 220050 Minsk, Belarus (Received August 24, 2010; accepted in revised form February 8, 2011) Polyaniline / Electrochemical Patterning / Conducting Polymers

[1] Albuquerque, J. E., Mattoso, L. H. C., Balogh, D. T., Faria, R. M., Masters, J. G., & MacDiarmid, A. G. (2000). A simple method to estimate the oxidation state of polyanilines. Synthetic Metals, 113, 19–22. DOI: 10.1016/s0379-6779(99)00299-4. http://dx.doi.org/10.1016/S0379-6779(99)00299-4 [2] Anilkumar, P., & Jayakannan, M. (2008). Divergent nanostructures from identical ingredients: Unique amphiphilic micelle template for polyaniline nanofibers, tubes, rods, and spheres. Macromolcules, 41, 7706–7715. DOI: 10.1021/ma801090f. http://dx.doi.org/10.1021/ma

e-Polymers 2007, no. 012 http://www.e-polymers.org ISSN 1618-7229 Polyaniline-modified Montmorillonite Nanocomposite as an Actuator Masumeh Golmohammadi,1 Mehrdad Kokabi,1 * Ali Akbar Entezami2 1 Polymer Engineering Group, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran, I. R. Iran. *E-mail address: mehrir@modares.ac.ir. Tel: +98-21-8801-1001. Fax: +98-21-8800-6544 2 Polymer Group, Chemistry Department, Tabriz University, P.O. Box: 5166616471, Tabriz, I. R. Iran. (Received: 3 November, 2006; published: 26

, M. Fallahi and M. Nakhshab: “Analysis of anatoxin-a using polyaniline as a sorbent in solid-phase microextraction coupled to gas chromatography-mass spectrometry”, J. Chromatogr. A, Vol. 1078, (2005), pp. 120–127. http://dx.doi.org/10.1016/j.chroma.2005.04.053 [20] M. Huang, G. Jiang and Y. Cai: “Electrochemical preparation of composite polyaniline coating and its application in the determination of bisphenol A, 4-n-nonylphenol, 4-tert-octylphenol using direct solid phase microextraction coupled with high performance liquid chromatography”, J. Sep. Sci., Vol. 28

, 7535–7537. DOI: 10.1021/ma025571l. http://dx.doi.org/10.1021/ma025571l [7] do Nascimento, G.M., da Silva, J. E. P., de Torresi, S. I. C., Santos, P. S., & Temperini, M. L. A. (2002b). Spectroscopic characterization of the inclusion compound formed by polyaniline and β-cyclodextrin. Molecular Crystals and Liquid Crystals, 374, 53–58. DOI: 10.1080/10587250210439. http://dx.doi.org/10.1080/10587250210439 [8] do Nascimento, G. M., Pereira da Silva, J. E., Córdoba de Torresi, S. I., & Temperini, M. L. A. (2002c). Comparison of secondary doping and thermal treatment in

Rev Chem Eng 27 (2011): 15–21 © 2011 by Walter de Gruyter • Berlin • Boston. DOI 10.1515/REVCE.2011.004 Literature review: conducting carbon nanotube/polyaniline nanocomposites Ran Y. Suckeveriene 1 , Evgeni Zelikman 2 , Guy Mechrez 2 and Moshe Narkis 2, * 1 Interdepartmental Program in Polymer Engineering , Technion-IIT, Haifa , Israel 2 Department of Chemical Engineering , Technion-IIT, Haifa , Israel, e-mail: narkis@tx.technion.ac.il * Corresponding author Abstract Polymeric nanocomposites consist of nanoparticles imbed- ded in

[1] Bílek, F., Křížová, T., & Lehocky, M. (2011). Preparation of active antibacterial LDPE surface through multistep physicochemical approach: I. Allylamine grafting, attachment of antibacterial agent and antibacterial activity assessment. Colloids and Surfaces B: Biointerfaces, 88, 440–447. DOI: 10.1016/j.colsurfb.2011.07.027. http://dx.doi.org/10.1016/j.colsurfb.2011.07.027 [2] Blinova, N. V., Sapurina, I., Klimović, J., & Stejskal, J. (2005). The chemical and colloidal stability of polyaniline dispersions. Polymer Degradation and Stability, 88, 428–434. DOI

[1] Cho, M. S., Cho, Y. H., Choi, H. J., & Jhon, M. S. (2003). Synthesis and electrorheological characteristics of polyanilinecoated poly(methyl methacrylate) microsphere: Size effect. Langmuir, 19, 5875–5881. DOI: 10.1021/la026969d. http://dx.doi.org/10.1021/la026969d [2] Cho, M. S., Choi, H. J., & Ahn, W. S. (2004). Enhanced electrorheology of conducting polyaniline confined in MCM-41 channels. Langmuir, 20, 202–207. DOI: 10.1021/la035051z. http://dx.doi.org/10.1021/la035051z [3] Choi, H. J., Kim, T. W., Cho, M. S., Kim, S. G., & Jhon, M. S. (1997

mechanical and thermal properties [10, 13]. In this work, we introduced polyaniline (PANI) into polyphosphoester membranes, with lithium triflate. Polyaniline (PANI) was introduced in membrane formulation in order to enhance the ionic conductivity of SPE. The PANI amounts chosen to be use in formulation were under 0.3 wt%. SPE composite membranes contain: tris(4-hidroxybutylacrylate)-phosphate, polyphosphoester, lithium triflate 15 wt% and different amount of PANI. The effect of PANI on the ionic conductivity and transference number of polyphosphoester polymer by applying