Search Results

You are looking at 1 - 6 of 6 items :

  • "polymer microchips" x
Clear All

Julia Bavendiek*, Johannes Sackmann, Werner Karl Schomburg, Steffen Gräber, Wilhelm Jahnen-Dechent and Andreas Pasch Measuring of calcification risk with polymer microchips Calcification risk of patients has been determined in comparatively large and expensive nephelometers in a tem- perature controlled room at 37°C [2]. In these machines, the situation in human blood vessels is simulated in a microtiter plate. The blood serum of patients is mixed with calcium and phosphate and dosed into the wells of the titer plate. Virtually instantaneously so

Walter de Gruyter • Berlin • Boston S231 Measuring of calcification risk with polymer microchips Julia Bavendiek, Lehr- und Forschungsgebiet Konstruktion und Entwicklung von Mikrosystemen (KEmikro), RWTH Aachen, Campus-Boulevard 30, 52074 Aachen, Germany , bavendiek@kemikro.rwth-aachen.de Johannes Sackmann, Lehr- und Forschungsgebiet Konstruktion und Entwicklung von Mikrosystemen (KEmikro), RWTH Aachen, Campus-Boulevard 30, 52074 Aachen, Germany , sackmann@kemikro.rwth-aachen.de Werner Karl Schomburg, Lehr- und Forschungsgebiet Konstruktion und Entwicklung von

result of the potential difference between the conductive microchip and the pipette tip. This process can be fully automated using robots handling a 96- well sample plate with a cycle time of 40 s to inject a sample into the mass spectrometer (Van Pelt et al., 2002). The sec- ond category makes use of thin glass or polymer microchips embedding one or several microchannels (Lazar et al., 2000; Rohner et al., 2001). On one side, these channels have sam- ple reservoirs that can be connected with infusion lines (e.g., LC), on the other side there is a tip-shaped outlet

, Germany); Tilmann Sander-Thoemmes (Physikalisch-Technische Bundesanstalt, Germany); Gerhard Schmidt (CAU Kiel, Germany) Biosensors & Bioanalytics G3.6 26.09.2018 16:20 Measuring of calcification risk with polymer microchips Julia Bavendiek (RWTH Aachen University, Germany); Johannes Sackmann and Werner Karl Schomburg (RWTH Aachen, Germany); Steffen Gräber (Helmholtz-Institut für Biomedizinische Technik - Uniklinik RWTH Aachen, Germany); Willi Jahnen-Dechent (RWTH Aachen, Germany); Andreas Pasch (Calciscon AG, Switzerland) Biosensors & Bioanalytics G3.7 26

Challenges in Administering Biopharmaceuticals: Formulation and Deliv- ery Strategies,” Nature Reviews Drug Discovery 13 (2014): 655–72. NOTES TO CHAPTER 4 201 41. Amy C. Richards Grayson et al., “Multi- Pulse Drug Delivery from a Re- sorbable Polymeric Microchip Device,” Nature Materials 2 (2003): 767– 72; Robert Farra et  al., “First- in- Human Testing of a Wirelessly Con- trolled Drug Delivery Microchip,” Science Translational Medicine 4 (2012): 122ra21. 42. Yue Lu et al., “Bioresponsive Materials,” Nature Reviews Materials 2 (2016): 16075. 43. J. Yu et

;21:2475–90. [163] Grayson ACR, Choi IS, Tyler BM, Wang PP, Brem H, Cima MJ, Langer R. Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat Mater 2003;2:767–72. [164] Sivakumar PM, Cometa S, Alderighi M, Prabhawathi V, Doble M, Chiellini F. Chalcone. Carbohydr Polym 2012;87:353– 60. [165] Vunjak-Novakovic G, Radisic M. Cell seeding of polymer scaffolds. Biopolym Methods Tissue Eng Methods Mol Biol 2004;238:131–45. [166] Naarmann H. Polymers, electrically conducting. Ullmann’s encyclopedia of industrial chemistry. Weinheim (Germany): Wiley-VCH Verlag