Search Results

You are looking at 1 - 10 of 9,219 items :

  • "thin film" x
Clear All

., Nagashio N., Feigelson R., Giles N., J. Phys. Condens. Matter. 17, 549 (2005). 14. Zebbar N., Aida M.S., Hafdallah A., Daranfad W., Lekiket H., and Kechouane M., Materials Science Forum, 609, 133-137 (2009). 15. Chopra K.L., Thin Film Phenomena, McGraw Hill Book Company, USA, p.729 (1969). 16. Rosete-Aguilar M., et al. Investigacion, Rev. Mex. Fis, 54 (2), 141-148 (2008).

., 140 (3) (2001), 206. [6] CHOU W.J., YU G.P., HUANG J.H., Surf. Coat. Tech., 149 (2002), 7. [7] OETTEL H., WIEDEMANN R., PREIBLER S., Surf.Coat. Tech., 74 - 75 (1) (1995), 273. [8] CHENG Z., PENG H., XIE G., SHI Y., Surf. Coat. Tech., 138 (2 - 3) (2001), 237. [9] TAMURA M., KUBO H., Surf. Coat. Tech., 49 (1 - 3) (1991), 194. [10] ALMTOFT K.P., Structural characterization of nanocrystalline thin films grown by magnetron sputtering, PhD Thesis, University of Aarhus, Denmark, 2006. [11] STEENBECK K., STEINBEIB E., UFERT K.D., Thin Solid Films, 92 (4) (1982), 371. [12

nonlocal 3D-variational model for the electric polarization. Via an asymptotic process based on dimensional reduction, 2D-variational models for thin films were obtained in [ 22 ], and 1D-variational models for thin wires were obtained in [ 23 ]. Now, we summarize the essential features of the model that we consider (see also [ 5 , 9 , 12 , 30 , 31 , 32 , 33 ]). We do not take into account any deformation of the ferroelectric material. The electric displacement 𝐃 {{\mathbf{D}}} is given by 𝐃 = ε 0 ⁢ 𝐄 + 𝐏 {{\mathbf{D}}=\varepsilon_{0}{\mathbf

REFERENCES 1. Zachwieja, U., and Jacobs, H. (1990). Ammonothermalsynthese von kupfernitrid, Cu 3 N. J. Less Common Metals 161 , 175–184. DOI: 10.1016/0022-5088(90)90327-G. 2. Paniconi, G., Stoeva, Z., Doberstein, H., Smith, R. I., Gallagher, B. L., and Gregory, D.H. (2007). Structural chemistry of Cu 3 N powders obtained by ammonolysis reactions. Solid State Sci. 9 , 907–913. DOI: 10.1016/j.solidstatesciences.2007.03.017. 3. Asano, M., Umeda, K., and Tasaki, A. (1990). Cu 3 N thin film for a new light recording media. Jpn. J. Appl. Phys. 29 , 1985–1986. DOI

:= (– Δ ) s , s ∈ (0, 1), is the fractional Laplacian (see, e.g., [ 51 , 65 ]), the dimension d ≥ 1, and the mobility function m is linear, namely m ( u ) = u . From a mathematical point of view, System (1.1) appears, at least formally, as an interpolation between the second-order nonlinear diffusion model called Porous Medium Equation (case s = 0, described in the survey paper [ 5 ] and in the monograph [ 69 ], where complete references to origins, theory and applications are given) and and the fourth-order Thin Film Equation (case s = 1) for which the

[1] Azzaroni, O., Brown, A. A., & Huck, W. T. S. (2006). UCST wetting transitions of polyzwitterionic brushes driven by selfassociation. Angewandte Chemie International Edition, 45, 1770–1774. DOI: 10.1002/anie.200503264. http://dx.doi.org/10.1002/anie.200503264 [2] Bai, S., Li, S., Yao, T., Hu, Y., Bao, F., Zhang, J., Zhang, Y., Zhu, S., & He, Y. (2011). Rapid detection of eight vegetable oils on optical thin-film biosensor chips. Food Control, 22, 1624–1628. DOI: 10.1016/j.foodcont.2011.03.019. http://dx.doi.org/10.1016/j.foodcont.2011.03.019 [3] Barbey, R

1 Introduction Metal chalcogenide thin films attracted considerable attention as promising linear and nonlinear optical (NLO) materials due to their novel properties such as wide band gap, significant absorption coefficients, high chemical, thermal stability, and environment-friendly applications. The optical study of the ZnSe thin film is found to be of keen interest to researchers due to their wide applications in various optoelectronic devices such as blue-green light-emitting diodes, laser diodes, solar cells, thin-film transistors, etc. [ 1 ], [ 2 ], [ 3

.snb.2010.05.001 [12] I. Hayakawa et al., Sensor. Actuat. B-Chem. 62, 55 (2000) http://dx.doi.org/10.1016/S0925-4005(99)00303-2 [13] M. Radecka et al., Sensor. Actuat. B-Chem. 47, 194 (1998) http://dx.doi.org/10.1016/S0925-4005(98)00023-9 [14] N. Barsan, U. Weimar, J. Electroceram. 7, 143 (2001) http://dx.doi.org/10.1023/A:1014405811371 [15] P. Singh et al., Physica B 403, 3769 (2008) http://dx.doi.org/10.1016/j.physb.2008.07.021 [16] N. Sbai et al., Surf. Sci. 601, 5649 (2007) http://dx.doi.org/10.1016/j.susc.2007.09.019 [17] K. Zakrzewska, Titanium Dioxide Thin Films

://cat.inist.fr/?aModele=afficheN&cpsidt=5266186 Barton, R., Davis, C.R., Rubin, K., & Lim, G. (1986). New phase change material for optical recording with short erase time. Appl. Phys. Lett., 48 (19), 1255-1257. http://dx.doi.org/10.1063/1.97031. Orava, J., Wagner, T., Krbal, M., Kohoutek, T., Vlcek, M., Benes, L., Kotulanova, E., Bezdicka, P., Klapetek, P., & Frumar, M. (2007). Selective wet-etching of amorphous/crystallized Ag-As-S and Ag-As-S-Se chalcogenide thin films. J. Phys. Chem. Solids, 68 (5-6), 1008-1013. DOI: 0.1016/j.jpcs.2007.03.056. Orava, J., Wagner, T., Krbal, M., Kohoutek, T., Vlcek, M

[1] Bhuiyan M.A.S., Bhuiyan A.S., Solar Energy in Bangladesh, Lambert Academic Publishing, U.S.A., 2012 [2] Gordon J., Solar Energy: The State of the Art (ISES position papers), James & James Ltd, UK, 2005 [3] Brummer A., Honkimäki V., Berwian P., Probst V., et al., Formation of CuInSe2 by the annealing of stacked elemental layers—analysis by in situ high-energy powder diffraction, Thin Solid Films, 2003, 437, 297–307 http://dx.doi.org/10.1016/S0040-6090(03)00685-0 [4] Chen H., Characterization and Nanostructure Analysis of Electrodeposited CuInSe2 Thin Film