[1]

Reed GT, Png CEJ. Silicon optical modulators. Mater Today 2005;8:40–50.Google Scholar

[2]

Xu Q, Manipatruni S, Schmidt B, Shakya J, Lipson M. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt Express 2007;15:430–6.Google Scholar

[3]

Nguyen HC, Hashimoto S, Shinkawa M, Baba T. Compact and fast photonic crystal silicon optical modulators. Opt Express 2012;20:22465–74.Google Scholar

[4]

Baba T, Akiyama S, Imai M, et al. 50-Gb/s ring-resonator-based silicon modulator. Opt Express 2013;21:11869–76.Google Scholar

[5]

Gao Y, Huang X, Xu X. Electro-optic modulator based on a photonic crystal slab with electro-optic polymer cladding. Opt Express 2014;22:8765–78.Google Scholar

[6]

Melikyan A, Alloatti L, Muslija A, et al. High-speed plasmonic phase modulators. Nat Photonics 2014;8:229.Google Scholar

[7]

Corcoran B, Monat C, Grillet C, et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat Photonics 2009;3:206.Google Scholar

[8]

Galli M, Gerace D, Welna K, et al. Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities. Opt Express 2010;18:26613–24.Google Scholar

[9]

Zhang Z, Yoshie T, Zhu X, Xu J, Scherer A. Visible two-dimensional photonic crystal slab laser. Appl Phys Lett 2006;89:071102.Google Scholar

[10]

Noda S. Photonic crystal lasers – ultimate nanolasers and broad-area coherent lasers [Invited]. JOSA B 2010;27:B1–8.Google Scholar

[11]

Krauss TF. In 2013 Conference on Lasers Electro-Optics Europe International Quantum Electronics Conference CLEO EUROPE/IQEC, Munich, Germany, IEEE, 2013, pp. 1–1.Google Scholar

[12]

Chase C, Rao Y, Hofmann W, Chang-Hasnain CJ. 1550 nm high contrast grating VCSEL. Opt Express 2010;18:15461–6.Google Scholar

[13]

Antoni T, Kuhn AG, Briant T. Deformable two-dimensional photonic crystal slab for cavity optomechanics. Opt Lett 2011;36:3434–6.Google Scholar

[14]

Kemiktarak U, Stambaugh C, Xu H, Taylor J, Lawall J. Optomechanics with high-contrast gratings. Proc of SPIE 2014;8995:89950P.Google Scholar

[15]

Yoshie T, Scherer A, Hendrickson J, et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 2004;432:200.Google Scholar

[16]

Lalanne P, Chavel P. Metalenses at visible wavelengths: past, present, perspectives: metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev 2017;11:1600295.Google Scholar

[17]

Shrestha S, Overvig A, Yu N. In 2017 Conference on Lasers and Electro-Optics (CLEO), San Jose, California, USA, OSA (Optical Society of America), 2017, pp. 1–2.Google Scholar

[18]

Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 2017;4:625–32.Google Scholar

[19]

Khorasaninejad M, Shi Z, Zhu AY, et al. Achromatic metalens in the visible and metalens with reverse chromatic dispersion. Nano Lett 2017;17:1819–24.Google Scholar

[20]

Chen WT, Zhu AY, Sanjeev V, et al. Phase and dispersion engineering of metalenses: broadband achromatic focusing and imaging in the visible. ArXiv171109343 Phys 2017 (Accessed December 12, 2017, at http://arxiv.org/abs/1711.09343).Google Scholar

[21]

Yu N, Genevet P, Kats MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334:333–7.Google Scholar

[22]

Observation of light propagation in photonic crystal optical waveguides with bends – IET Journals & Magazine (Accessed December 12, 2017, http://ieeexplore.ieee.org/document/771014/).Google Scholar

[23]

Wang SS, Magnusson R, Bagby JS, Moharam MG. Guided-mode resonances in planar dielectric-layer diffraction gratings. JOSA A 1990;7:1470–4.Google Scholar

[24]

Wang SS, Magnusson R. Theory and applications of guided-mode resonance filters. Appl Opt 1993;32:2606–13.Google Scholar

[25]

Tibuleac S, Magnusson R. Reflection and transmission guided-mode resonance filters. JOSA A 1997;14:1617–26.Google Scholar

[26]

Rosenblatt D, Sharon A, Friesem AA. Resonant grating waveguide structures. IEEE J Quantum Electron 1997;33:2038–59.Google Scholar

[27]

Wood RW. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc of Phys Soc of London, 1902;18:269–75.Google Scholar

[28]

Hessel A, Oliner AA. A new theory of wood’s anomalies on optical gratings. Appl Opt 1965;4:1275–97.Google Scholar

[29]

Fano U. Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d’arco. Il Nuovo Cimento 1924–1942 1935;12:154–61.Google Scholar

[30]

Fano U. Effects of configuration interaction on intensities and phase shifts. Phys Rev 1961;124:1866–78.Google Scholar

[31]

Limonov MF, Rybin MV, Poddubny AN, Kivshar YS. Fano resonances in
photonics. Nat Photonics 2017;11:543.Google Scholar

[32]

Karagodsky V, Sedgwick FG, Chang-Hasnain CJ. Theoretical analysis of subwavelength high contrast grating
reflectors. Opt Express 2010;18:16973–88.Google Scholar

[33]

Chang-Hasnain CJ. High-contrast gratings as a new platform for integrated optoelectronics. Semicond Sci Technol 2011;26:014043.Google Scholar

[34]

Chang-Hasnain CJ, Yang W. High-contrast gratings for integrated optoelectronics. Adv Opt Photonics 2012;4:379–440.Google Scholar

[35]

Yoon JW, Song SH, Magnusson R. Critical field enhancement of asymptotic optical bound states
in the continuum. Sci Rep 2016;5:18301.Google Scholar

[36]

Hsu CW, Zhen B, Lee J, et al. Observation of trapped light within the radiation continuum.
Nature 2013;499:188–91.Google Scholar

[37]

Zhen B, Hsu CW, Lu L, Stone AD, Soljačić M. Topological nature of optical bound states in the continuum. Phys Rev Lett
2014;113:257401.Google Scholar

[38]

Wang Y, Song J, Dong L, Lu M. Optical bound states in slotted high-contrast gratings. J Opt
Soc Am B 2016;33:2472.Google Scholar

[39]

Bulgakov EN, Sadreev AF. Bloch bound states in the radiation continuum in a periodic array of dielectric rods.
Phys Rev A 2014;90:053801.Google Scholar

[40]

Luk’yanchuk B, Zheludev NI, Maier SA, et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 2010;9:707.Google Scholar

[41]

Khanikaev AB, Wu C, Shvets G. Fano-resonant metamaterials and their applications. Nanophotonics
2013;2:247–64.Google Scholar

[42]

Wu C, Arju N, Kelp G, et al. Spectrally selective chiral silicon metasurfaces based on
infrared Fano resonances. Nat Commun 2014;5:3892.Google Scholar

[43]

Zeng B, Majumdar A, Wang F. Tunable dark modes in one-dimensional “diatomic” dielectric gratings. Opt Express
2015;23:12478–87.Google Scholar

[44]

Lan S, Rodrigues SP, Taghinejad M, Cai, W. Dark plasmonic modes in diatomic gratings for plasmoelectronics.
Laser Photonics Rev 2017;11:1600312.Google Scholar

[45]

Hayashi S, Fujiwara Y, Kang B, et al. Line shape engineering of sharp Fano resonance in Al-based metal-dielectric multilayer structure. J Appl Phys 2017;122:163103.Google Scholar

[46]

Nguyen HS, Dubois F, Deschamps T, et al. Symmetry breaking in photonic crystals: on-demand dispersion from flatband to dirac cones. ArXiv171107588 Phys 2017 (Accessed December 12, 2017, at http://arxiv.org/abs/1711.07588).Google Scholar

[47]

Cui X, Tian H, Du Y, Tan P, Shi G, Zhou Z. Normal incidence narrowband transmission filtering in zero-contrast
gratings. ArXiv151108968 Phys 2015 (Accessed December 12, 2017, at http://arxiv.org/abs/1511.08968).Google Scholar

[48]

Cui X, Tian H, Du Y, Shi G, Zhou Z. Normal incidence filters using symmetry-protected modes in dielectric subwavelength gratings. Sci Rep 2016;6:36066.Google Scholar

[49]

Qiu C, Chen J, Xia Y, Xu Q. Active dielectric antenna on chip for spatial light modulation. Sci Rep 2012;2:855.Google Scholar

[50]

Liang Y, Peng W, Hu R, Lu M. Symmetry-reduced double layer metallic grating structure for dual-wavelength spectral filtering. Opt Express 2014;22:11633–45.Google Scholar

[51]

Sakoda K. Optical properties of photonic crystals. Springer, Berlin, New York, 2005; (Accessed December 12, 2017, at http://www.springerlink.com/openurl.asp?genre=book&isbn=3-540-20682-5).Google Scholar

[52]

Fan S, Suh W, Joannopoulos JD. Temporal coupled-mode theory for the Fano resonance in optical resonators. JOSA A 2003;20:569–72.Google Scholar

[53]

Hau LV, Harris SE, Dutton Z, Behroozi CH. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 1999;397:594.Google Scholar

[54]

Bigelow MS, Lepeshkin NN, Boyd RW. Observation of ultraslow light propagation in a ruby crystal at room temperature. Phys Rev Lett 2003;90:113903.Google Scholar

[55]

Lin Z, Christakis L, Li Y, et al. Topology-optimized dual-polarization dirac cones. ArXiv170503574 Phys, 2017 (Accessed December 12, 2017, at http://arxiv.org/abs/1705.03574).Google Scholar

[56]

Lin Z, Groever B, Capasso F, Rodriguez AW, Lončar M. Topology optimized multi-layered meta-optics. ArXiv170606715 Phys, 2017 (Accessed December 12, 2017, at http://arxiv.org/abs/1706.06715).Google Scholar

[57]

Scullion MG, Di Falco A, Krauss TF. Slotted photonic crystal cavities with integrated microfluidics for biosensing applications. Biosens Bioelectron 2011;27:101–5.Google Scholar

[58]

Zhuo Y, Cunningham BT. Label-free biosensor imaging on photonic crystal surfaces. Sensors 2015;15:21613–35.Google Scholar

[59]

Byrnes SJ, Lenef A, Aieta F, Capasso F. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt Express 2016;24:5110.Google Scholar

[60]

Yang J, Fan JA. Topology-optimized metasurfaces: impact of initial geometric layout. Opt Lett 2017;42:3161–4.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.