Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Civil Engineering

The Journal of Polish Academy of Sciences

4 Issues per year


SCImago Journal Rank (SJR): 0.251
Source Normalized Impact per Paper (SNIP): 0.521

Open Access
Online
ISSN
1230-2945
See all formats and pricing
More options …

Permeability of Sand-Clay Mixtures

G. Kacprzak
  • PhD Eng., Faculty of Civil Engineering, Warsaw University of Technology, Warszawa, Poland, Department of Roads and Bridges/Institute of Geoengineering and Underground Structures, 00-637 Warszawa, al. Armii Ludowej 16
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. Boutin / T. Doanh
Published Online: 2010-12-09 | DOI: https://doi.org/10.2478/v.10169-010-0017-6

Abstract

This study deals with the behavior of composite blends constituted of rigid and impervious grains included in saturated clay paste of kaolin, considered as permeable and deformable. Permeability tests performed during standard oedometr tests (before each load step) highlight the key role of the original and actual state of the clay paste, and show the existence of a threshold of sand grain concentration above which a structuring effect influences its permeability. In the light of these experiments some usual homogenization methods (with simplifying assumptions to make the problem manageable) are considered in order to model the mixture permeability. Qualitative and quantitative comparisons with experimental data point out their respective domain of interest and limitations of such approaches

Abstract

Soil materials made of sand and clay are widely encountered in civil engineering/geoengineering either as common natural soils on which structures are settled, or as reconstituted materials used for road embankment, earth dam or contamination barrier. Practice shows that such mixture characteristics highly depend on the nature of the constituents, especially on the mineralogical structure of the clay, on their relative proportions, as well as on the overall density and on the water content. However, if empirical rules are well established for design of geotechnical construction, the derivation of the sand-clay blends properties from that of the constituents remains an open question. Hence, authors try to better understand behaviour of sand-clay mixtures at the macroscale by relating them to the physics at the microscale what is typically an upscaling problem of homogenization.

Presented study deals with the permeability of composite blends constituted of rigid and impervious grains included in saturated clay paste of kaolin, considered as permeable and deformable. Permeability tests performed during standard oedometr tests (before each load step) highlight the key role of the original and actual state of the clay paste, and show the existence of a threshold of sand grain concentration above which a structuring effect influences its permeability. At the light of these experiments some usual homogenization methods (with simplifying assumptions to make the problem manageable) are considered to model the mixture permeability. Qualitative and quantitative comparisons with experimental data point out their respective domain of interest and limitations of such approaches

Abstract

W inzynierii ladowej/geoinzynierii bardzo czesto spotykamy sie z materiałami gruntowymi zbudowanymi z frakcji piaskowej i ilastej. Materiały te stanowia naturalne podłoze gruntowe dla posadawianych na nim budynków lub jako mieszanki rekonstytuowane uzywane sa do budowy nasypów drogowych, tam, zapór jak równiez barier uszczelniajacych. Doswiadczenie pokazuje, ze cechy tych materiałów zaleza od własciwosci komponentów, szczególnie od mineralogii iłu, od wzajemnych proporcji składników, od stopnia zageszczenia, jak równiez od wilgotnosci mieszanki. Mimo, ze do projektowania konstrukcji geotechnicznych stosuje sie proste i powszechnie znane zasady (równania empiryczne) bazujace na własciwosciach składników, wielokrotnie stawia sie pytanie czy jest to podejscie własciwe. W zwiazku z tym autorzy podjeli próbe lepszego zrozumienia własciwosci mieszanek piasek-ił w skali makro poprzez powiazanie ich ze zjawiskami fizycznymi jakie maja miejsce w materiale w skali mikro. Takie podejscie „skalowania” jest typowe dla homogenizacji. Prezentowane badania dotycza filtracji kompozytów/mieszanek zbudowanych ze sztywnych i szczelnych ziaren piasku zanurzonych w nasyconej woda pascie kaolinitu, rozwazanej jako materiał podlegajacy filtracji i deformacji. Badania wodoprzepuszczalnosci wykonane w czasie typowych badan edometrycznych uwidaczniaja wazna role poczatkowego i aktualnego (uzaleznionego od stanu naprezenia) stanu matrycy ilastej, jak równiez pokazuja istnienie wartosci progowej zageszczenia ziaren piasku, powyzej której zjawisko „strukturyzacji” matrycy wpływa istotnie na wodoprzepuszczalnosc mieszanki. W swietle przeprowadzonych badan, wyniki doswiadczalne porównano w sposób jakosciowy i ilosciowy z oszacowaniami empirycznymi typowych modeli homogenizacji, co pozwoliło na wskazanie zakresu poprawnego działania uzytych modeli matematycznych

Keywords: Sand-clay mixtures; Clay paste void ratio; Grain volume ratio; Permeability; Homogenization

References

  • 1. LCPC/SETRA Réalisation des remblais et des couches de forme, Guide technique GTR.(2000).Google Scholar

  • 2. C. Boutin, J-L. Auriault, Dynamic behavior of porous media saturated by a visoelastic fluid. Application to bituminous concrete. Int. J. Engng. Science, 28, 11, pp 1157-1181, 1990.Google Scholar

  • 3. V. Georgianou, J. Burland, D. Hight, The undrained behavior of clayed sands in triaxial compression and extension. Geotechnique, 41, 3, pp 383-393, 1990.CrossrefGoogle Scholar

  • 4. D.M. Wood, G.V. Kumar, Experimental observation of behavior of heterogeneous soils. Int. J. Cohesive Frictionnal Materials, 5, pp 373-398, 2000.Google Scholar

  • 5. S. Thevanayagam, Role of intergranular contacts, friction and interactions on undrained responses of granular mixes. Physics and mechanics of soil liquefaction. Lade - Yamamuro Eds, pp 67-78, Balkema Rotterdam, 1999.Google Scholar

  • 6. J-S. Lee, M. Guimaraes, J.C. Santamarina, Micaceous sand: Microscale mechanisms and macroscale response. J. Geotechnical and Geoenvironnement engineering, 133, 9, pp 1136-1143, 2007.Google Scholar

  • 7. J-K. Kim, J.C. Santamarina, Sand-Rubber mixtures (large rubber chips). Revue Canadienne de Geotechnique, pp 1457-1466, 2008.Google Scholar

  • 8. G. Kacprzak, Etude du comportement m´ecanique des m´elanges sable/argile. PhD ENTPE/INSA, 2006.Google Scholar

  • 9. C. Boutin, G. Kacprzak, T. Doanh, Interpretation of the stiffness and permeability of Sand-Kaolin mixtures in the framework of homogenization. Anais da Academia Brasileira de Ciˆencias, 82, 1, pp 243-260, 2010.Web of ScienceGoogle Scholar

  • 10. E. Liszkowska, On the universal Carman-Kozeny equation for permeability estimation of granular deposits, Geologos 1, 1996.Google Scholar

  • 11. R. P. Chapuis, M. Aubertin, On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils, Canadian Geotechnical Journal, 40, pp 616-628, 2003.CrossrefGoogle Scholar

  • 12. S. Pisarczyk, Physical and mechanical features of coarse-grained soils of some valleys of mountain rivers. PhD Thesis, Warsaw Technical University 1971, [in Polish].Google Scholar

  • 13. K. Biernatowski, E. Dembicki, K. Dzierżawski, W. Wolski, Foundation engineering. Design and execution, Warszawa, Arkady, 1987, [in Polish].Google Scholar

  • 14. W. Kollis, Technical soil knowledge, Arkady, Warszawa, 1966, [in Polish].Google Scholar

  • 15. Z. Pazdro, General hydrogeology Wyd. Geol., Warszawa, 1983, [in Polish].Google Scholar

  • 16. S. Pisarczyk, B. Rymsza, Laboratory and field research of soils, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1988, [in Polish].Google Scholar

  • 17. BN-76/8950-30 Polish Standard. Hydrotechnical construction. Calculation of coefficient of filtration of cohesionless soils based on their graining and porousness [in Polish].Google Scholar

  • 18. M. Amer, M. Asce, Amin, A. Awad, Permeability of cohesionless soils, Journal of the Geotechnical Engineering Division, 100, 12, pp 1039-1316, 1974.Google Scholar

  • 19. F. Tavenas, P. Leblond, P. Jean, S. Leroueil, The permeability of natural soft clays. Part II : Permeability characteristics, Canadian Geotechnical Journal, 20, 4, pp 645-660, 1983.CrossrefGoogle Scholar

  • 20. A.M. Samarasinghe, Y.H. Huang, V.P. Drnevich, Permeability and consolidation of normally consolidated soils, Journal of the Geotechnical Engineering Division, 108, 6, pp 835-850, 1982.Google Scholar

  • 21. T.S. Nagaraj, N.S. Pandian, P.S.R. Narasimha Raju, Stress-state-permeability relations for overconsolidated clays, G´eotechnique, 44, 2, pp 349-352, 1994.Google Scholar

  • 22. G. Mesri, R.E. Olson, Mechanism controlling the permeability of clays, Clays and Clay Minerals, 19, pp 151-158, 1971.Google Scholar

  • 23. A. Al Tabbaa, D. Muir Wood, Some measurements of the permeability of kaolin, G´eotechnique, 37, 4, pp 499-503, 1987.Google Scholar

  • 24. A.B. Hamidon, Some laboratory studies of anisotropy of permeability of kaolin, PhD Thesis University of Glasgow, 1994.Google Scholar

  • 25. G.V. Kumar, Some Aspects of The Mechanical Behavior of Mixtures of Kaolin and Coarse Sand, PhD Thesis University of Glasgow, 1996.Google Scholar

  • 26. T.C. Kenney, W.A Van Veen, M.A. Swallow, M.A. Sungalia, Hydraulic conductivity of compacted bentonite-sand mixtures, Canadian Geotechnical Journal, 29, pp 364-374, 1992.CrossrefWeb of ScienceGoogle Scholar

  • 27. R.P. Chapuis, Sand-bentonite liners : predicting permeability from laboratory tests, Canadian Geotechnical Journal, 27, pp 47-57, 1990.CrossrefGoogle Scholar

  • 28. D.M. Wood, Soil behavior and critical state soil mechanics, Cambridge University Press, 1990. Google Scholar

  • 29. J.K. Mitchell, Fundamentals of soil behavior, Wiley, NewYork, 1976.Google Scholar

  • 30. B. Łuczak-Wilamowska, Shear strength of mixed soils: clay - sand, Zeszyty Naukowe Politechniki Białostockiej, Z. 28, t. 1, s. 201-211, 2006 [in Polish].Google Scholar

  • 31. J.L. Auriault, Heterogeneous media: Is an Equivalent Homogeneous Description Always Possible? Int. J. Engng. Sci., 29, pp 785-795, 1991.Google Scholar

  • 32. E. Sanchez-Palencia, Non-homogeneous media and vibration theory. In Lectures Notes in Physics, 127, Springer-Verlag, Berlin, 1980.Google Scholar

  • 33. J.A. Luizar-Obregon, M.A. Murad, F.A. Rochinha, Computational Homogenization of non linear hydromechanical coupling in poroelasticity. International Journal of Multiscale Computational Engineering, 4, pp 693-732, 2006.Google Scholar

  • 34. T. Chu, Z. Hashin, Plastic behaviour of composite and porous media under isotropic stress Int. J. Engng. Sci., 9, pp 971-994, 1971.Google Scholar

  • 35. G. Tandon, G. Weng, A theory of particulate reinforced of plasticity. J. Appl. Mech., 55, pp 126-135, 1988.CrossrefGoogle Scholar

  • 36. Y. Qiu, G. Weng, A theory of plasticity for porous material and particulate reinforced composites. J. Appl. Mech., 59, pp 1919-1951, 1992.CrossrefGoogle Scholar

  • 37. G. Dvorak, Y. Bahei-El-Din, A. Wafa, The modeling of inelastic composite materials with the transformation field analysis. Modelling Simul. Mater. Sci. Eng, 2, pp 571-586, 1994.Google Scholar

  • 38. J.C. Michel, H. Moulinec, P. Suquet, A computational scheme for linear and non linear composites with arbitrary phase contrast. Int. J. Numer. Meth. Engng., 52, pp 139-160, 2001.Google Scholar

  • 39. P. Suquet, Effective behavior of nonlinear composites in continuum micromechanics, P. Suquet and A. Zaoui. Eds. pp 197-264 Springer, Wien New York, 1997.Google Scholar

  • 40. J.-P. Boelher, Applications of Tensor Functions in Solid Mechanics. CISM Courses and Lectures, Springer Verlag, Wien, NY., 1987.Google Scholar

  • 41. Z. Hashin, Assessment of self consistent scheme approximation : Conductivity of particulate composites. J. Comp. Mater., 2, pp 284-304, 1968. Google Scholar

About the article

Received: 2010-02-15

Revised: 2010-12-17

Published Online: 2010-12-09

Published in Print: 2010-12-01


Citation Information: Archives of Civil Engineering, Volume 56, Issue 4, Pages 299–320, ISSN (Online) 1230-2945, DOI: https://doi.org/10.2478/v.10169-010-0017-6.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
I. Aksu, E. Bazilevskaya, and Z.T. Karpyn
GeoResJ, 2015, Volume 7, Page 1

Comments (0)

Please log in or register to comment.
Log in