Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Civil Engineering

The Journal of Polish Academy of Sciences

4 Issues per year

SCImago Journal Rank (SJR): 0.251
Source Normalized Impact per Paper (SNIP): 0.521

Open Access
See all formats and pricing
More options …
Volume 59, Issue 3

Laboratory Experimental Analysis on Encapsulated Stone Column

Y.K. Tandel / C.H. Solanki / A.K. Desai
Published Online: 2013-09-06 | DOI: https://doi.org/10.2478/ace-2013-0020


The application of stone column technique for improvement of soft soils has attracted a considerable attention during the last decade. However, in a very soft soil, the stone columns undergo excessive bulging, because of very low lateral confinement pressure provided by the surrounding soil. The performance of stone column can be improved by the encapsulation of stone column by geosynthetic, which acts to provide additional confinement to columns, preventing excessive bulging and column failure. In the present study, a detailed experimental study on behavior of single column is carried out by varying parameters like diameter of the stone column, length of stone column, length of geosynthetic encapsulation and stiffness of encapsulation material. In addition, finite-element analyses have been performed to access the radial deformation of stone column. The results indicate a remarkable increase in load carrying capacity due to encapsulation. The load carrying capacity of column depends very much upon the diameter of the stone column and stiffness of encapsulation material. The results show that partial encapsulation over top half of the column and fully encapsulated floating column of half the length of clay bed thickness give lower load carrying capacity than fully encapsulated end bearing column. In addition, radial deformation of stone column decreases with increasing stiffness of encapsulation material.

Keywords: Stone column; Encapsulation; Geosynthetic; Experiment; FEM; Load carrying capacity; Radial deformation; Deformed shape


  • 1. D. ALEXIEW, D. BROKEMPER, S. LOTHSPEICH, Geotextile Encased Columns (GEC): Load Capacity, Geotextile Selection and Pre-design Graphs, Geo-Frontiers, ASCE Geotechnical Special Publication, 497-510, Austin, USA 2005.Google Scholar

  • 2. H. G. KEMPFERT, P. WALLIS, Geokunststoffummantelte Sandsäulen-einneues Gründungsverfahren im Verkehrswegebau, Geotechnik Sonderheft zur 5-Informations und Vortragsveranstaltung über Kunststoffe in der Geotechnik, 411-416, München, Germany 1997. (in German)Google Scholar

  • 3. H. G. KEMPFERT, W. MÖBIUS, P. WALLIS, M. RAITHEL, M. GEDUHN, R. G. MCCLINTON, Reclaiming Land with Geotextile-Encased Columns, Geotechnical Fabrics Report, 8, 34-39, 2002.Google Scholar

  • 4. U. TRUNK, G. HEERTEN, A. PAUL, E. REUTER, Geogrid Wrapped Vibro Stone Columns, Third European Geosynthetics Conference, Geotechnical Engineering with Geosynthetics, 289-294, Munich, Germany, 2004.Google Scholar

  • 5. L. G. DE MELLO, M. MONDOLFO, F. MONTEZ, C. N. TSUKAHARA, W. BILFINGER, First Use of Geosynthetic Encased Sand Columns in South America, First Pan-American Geosynthetics Conference, 1323-1341, Cancun, Mexico 2008.Google Scholar

  • 6. G. ARAUJO, M. PALMEIRA, R. CUNHA, Behaviour of Geosynthetic-Encased Granular Columns in Porous Collapsible soil, Geosynthetics International, 16, 6, 433-451, 2009.Web of ScienceCrossrefGoogle Scholar

  • 7. T. AYADAT, A. M. HANNA Encapsulated Stone Columns as A Soil Improvement Technique for Collapsible Soil, Ground Improvement, 9, 4, 137-147, 2005.Google Scholar

  • 8. C. DI PRISCO, A. GALLI, E. CANTARELLI, D. BONGIORNO, Georeinforced Sand Columns: Small Scale Experimental Tests and Theoretical Modeling, 8th Int. Conf. on Geosynthetics, 1685-1688, The Netherlands, 2006.Google Scholar

  • 9. S. N. MALARVIZHI, K. ILAMPARUTHI, Comparative Study on the Behavior of Encased stone column and Conventional Stone Column, Soils and Foundations, 47, 5, 875-885, 2007.Google Scholar

  • 10. S. MURUGESAN, K. RAJAGOPAL, Model Tests on Geosynthetic Encased Stone Columns, Geosynthetic International, 14, 6, 346-354, 2007.Google Scholar

  • 11. J. GNIEL, A. BOUAZZA, Improvement of Soft Soils Using Geogrid Encased Stone Columns, Geotextile and Geomembrane, 27, 3, 167-175, 2009.Google Scholar

  • 12. C. S. WU, Y. S. HONG, Laboratory Tests on Geosynthetic Encapsulated Sand Columns, Geotextile and Geomembrane, 27, 2, 107-120, 2009.Web of ScienceGoogle Scholar

  • 13. M. KHABBAZIAN, V. N. KALIAKIN, C. L. MEEHAN, Numerical Study of Geosynthetic Encasement on The Behaviour of Granular Columns, Geosynthetics International, 17, 3, 132-142, 2010.Web of ScienceCrossrefGoogle Scholar

  • 14. S. R. LO, R. ZHANG, J. MAK, Geosynthetic-Encased Stone Columns in Soft Clay: A Numerical Study, Geotextiles and Geomembranes, 28, 3, 292-302, 2010.CrossrefWeb of ScienceGoogle Scholar

  • 15. M. MURUGESAN, K. RAJAGOPAL, Geosynthetic-Encased Stone Columns: Numerical Evaluation, Geotextiles and Geomembranes, 24, 6, 349-358, 2006.Web of ScienceCrossrefGoogle Scholar

  • 16. B. PULKO, B. MAJES, L. LOGAR, Geosynthetic-Encased Stone Columns: Analytical Calculation Model, Geotextiles and Geomembranes, 29, 1, 29-39, 2011.CrossrefWeb of ScienceGoogle Scholar

  • 17. C. YOO, S. B. KIM, Numerical Modeling of Geosynthetic Encased Stone Column-Reinforced Ground, Geosynthetics International, 16, No. 3, 116-126, 2009.Web of ScienceCrossrefGoogle Scholar

  • 18. Y. ZHANG, D. CHAN, Y. WANG, Consolidation of Composite Foundation Improved by Geosynthetic- Encased Stone Columns, Geotextiles and Geomembranes, 32, 10-17, 2012.CrossrefWeb of ScienceGoogle Scholar

  • 19. M. RAITHEL, H. G. KEMPFERT, Calculation Models for Dam Foundations With Geotextile-Coated Sand Columns, GeoEngineering, 347, Melbourne, Australia 2000.Google Scholar

  • 20. C. WU, Y. HONG, H. LIN, Axial Stress-Strain Relation of Encapsulated Granular Column, Computers and Geotechnics, 36, 226-240, 2009.Web of ScienceGoogle Scholar

  • 21. J. E. BOWLES, Foundation analysis and design, 5th Ed., McGraw- Hill International Editions, Singapore 1988.Google Scholar

  • 22. ASTM D4595, Standard Test Method for Tensile Properties of Geotextiles by Wide-Width Strip Method, ASTM International, West Conshohocken, PA. 1986.Google Scholar

  • 23. R. B. BRINKGREVE AND P. A. VERMEER, PLAXIS 3D-Finite Element Code for Soil and Rocks Analysis, Balkema, Rotterdam, The Netherlands, 2012.Google Scholar

  • 24. A. P. AMBILY, S. R. GANDHI, Behavior of Stone Columns Based on Experimental and FEM Analysis, Journal of Geotechnical and Geoenvironmental Engineering, 133, 4, 405-415, 2007.Google Scholar

  • 25. V. MUSTAFA, A. MUSTAFA, S. BANU IKIZLER, C. UMIT CALIK, Experimental and Numerical Investigation of Slope Stabilization by Stone Columns, Natural Hazards, 64, 797-820, 2012. Web of ScienceGoogle Scholar

About the article

Received: 2013-03-12

Revised: 2013-08-20

Published Online: 2013-09-06

Published in Print: 2013-09-01

Citation Information: Archives of Civil Engineering, Volume 59, Issue 3, Pages 359–379, ISSN (Online) 1230-2945, DOI: https://doi.org/10.2478/ace-2013-0020.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in