Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archives of Civil Engineering

The Journal of Polish Academy of Sciences

4 Issues per year

SCImago Journal Rank (SJR): 0.251
Source Normalized Impact per Paper (SNIP): 0.521

Open Access
See all formats and pricing
More options …
Volume 60, Issue 1


Experimentally Assisted Modelling of the Behaviour of Steel Angle Brace

A. M. Barszcz
Published Online: 2014-03-12 | DOI: https://doi.org/10.2478/ace-2014-0001


Steel frame wind bracing systems are usually made of hot rolled profiles connected to frame elements directly or through a gusset plate. The behaviour of angle bracing members is generally complex since controlled by tension or compression, bending and torsion. The common practice is to transform the problem of complex behaviour into the buckling strength of a truss member. This paper deals with an analytical formulation of the force-deformation characteristic of a single angle brace subjected to compression. A strut model takes into consideration the effect of brace end connections and softening effect of its force-deformation characteristic. Two different boundary conditions, typical for engineering practice, are dealt with. Experimental program of testing the behaviour of angle brace in portal sub-frame specimens is described. Results of experimental investigations are presented. They are used for the validation of developed model. Conclusions are formulated with reference to the application of validated brace model in the analysis of braced steel frameworks.

Keywords: steel frame; truss bracing; angle brace; welded fork type connection; bolted through one leg type connection; force-deformation characteristic


  • 1. N. S. TRAHAIR, T. USAMI, T. V. GALAMBOs, Eccentrically Loaded Single Angle Columns. Research Report No. 11, Department of Civil and Environmental Engineering, Washigton University, St. Couris, 1969.Google Scholar

  • 2. M. C. TEMPLE, S. S. SAKALA, Single angle compression members welded by one leg to a gusset plate. Experimental study. Canadian Journal of Civil Engineering, vo. 25, no. 3, 569-584, 1988.Google Scholar

  • 3. D. H. ELGAALY, W. DAWIDS, Behavior of single angle compression members. Journal of Structural Engineering, ASCE, vol. 117, no. 12, 3720-3741, 1991.CrossrefGoogle Scholar

  • 4. S. M. R. ALDURI, M. K. S. MAGUDULA, Flexural buckling of steel angles. Experimental investigations. Journal of Structural Engineering, ASCE, vol. 122, no. 3, 309-317, 1996.CrossrefGoogle Scholar

  • 5. S. L. CHAN, S. H. CHO, Second-order analysis and design of angle trusses. Part I: Elastic analysis and design. Engineering Structures, vol. 30, no. 3, 616-625, 2008.Google Scholar

  • 6. R. D. ZIEMIAN, Guide to Stability Design Criteria for Metal Structures. 6th Edition, John Wiley & Sons, 2010.Google Scholar

  • 7. M. A. GIŻEJOWSKI, A. M. BARSZCZ, J. D. G. FOSTER, J. UZIAK, O. J. KANYETO, Experimental investigations of the behaviour of angle struts, Proceedings of the XIth ICMS-2006 (eds. M. Giżejowski, A. Kozłowski, J. Ziółko), Taylor&Francis, Rzeszów, Poland, 152-153, 2006 [full paper on CD, 145-154].Google Scholar

  • 8. Y. LUI, S. CHANTEL, Experimental study of steel single unequal leg angles under eccentric compression. Journal of Constructional Steel Research, vol. 67, no. 6, 919-928, 2011.Web of ScienceGoogle Scholar

  • 9. S. CHEN, X. WANG, Buckling Strength of Single Angle Struts. Part 1: Angles Subject to Axial Compression. Advances in Structural Engineering, vol. 16, no. 6, 1129-1137, 2013.Google Scholar

  • 10. S. CHEN, X. WANG, Buckling Strength of Single Angle Struts. Part 2: Angles Connected by One Leg at Both Ends. Advances in Structural Engineering, vol. 16, no. 6, 1139-1148, 2013.Google Scholar

  • 11. K. IKEDA, S. A. MAHIN, Cyclic response of steel braces, Journal of Structural Engineering, 112, 2, 242-261, 1986.Google Scholar

  • 12. W. GAN, J. F. HALL, Static and dynamic behavior of steel braces under cyclic displacements, Journal of Engineering Mechanics, 124, 1, 87-93, 1998.Google Scholar

  • 13. J. JIN, S. EL-TAWIL, Inelastic cyclic model for steel braces, Journal of Engineering Mechanics, 129, 5, 548-577, 2003.Google Scholar

  • 14. B. V. FELL, A. M. KANVINDE, G. G. DEIERLEIN, A. T. MYERS, Experimental investigation of inelastic cycling buckling and fracture of steel braces, Journal of Structural Engineering, 135, 1, 19-22, 2009.Google Scholar

  • 15. A. DAVARAN, M. ADELZADEH, An improved non-linear physical modeling method for brace elements. Transaction A: Civil Engineering, Scientia Iranica, 16, 1, 58-64, 2009Google Scholar

  • 16. M. ŁUBIŃSKI, J. KARCZEWSKI, J. KAFARSKI, Limit-state-design of spatial lattice structures. Archiwum Inżynierii Lądowej, XII, 1, 27-41, 1976 [in Polish].Google Scholar

  • 17. A. M. BARSZCZ, Load carrying capacity of space deck member accounted for shakedown effects, Warsaw University of Technology, Warszawa 1988 [manuscript in Polish].Google Scholar

  • 18. J. KARCZEWSKI, A. BARSZCZ, A large defl ections analysis of an elastic-plastic strut axially loaded in a cyclically variable manner, Archives of Civil Engineering, XLI, 2, 244-265, 1995.Google Scholar

  • 19. S. KATO, M. FUJIMOTO, T. OGAWA, Buckling load of steel single-layer reticulated domes of circular plan. Journal of the International Association for Shell and Spatial Structures. Vol. 46, No. 1, 41-63, 2005.Google Scholar

  • 20. T. OGAWA, S. KATO, M. FUJIMOTO, Buckling load of elliptic and hyperbolic paraboloidal steel single-layer reticulated shells of rectangular plan. Journal of the International Association for Shell and Spatial Structures. Vol. 49, No. 1, 21-36, 2008.Google Scholar

  • 21. A. STEINBOECK, G. HOEFINGER, X. JIA, H. A. MANG, Three pending questions in structural stability. Journal of the International Association for Shell and Spatial Structures. Vol. 50, No. 1, 51-64, 2009.Google Scholar

  • 22. G. MONTI, C. NUTI, Nonlinear cyclic behavior of reinforcing bar including buckling, Journal of Structural Engineering, 118, 12, 3268-3284, 1992Google Scholar

  • 23. R. DHAKAL, K. MAEKAWA, Path-dependent cyclic stress-strain relationship of reinforcing bar including buckling, Engineering Structures, 24, 11, 1383-1396, 2002Google Scholar

  • 24. J. KORENZ, Modeling of reinforcing bar subjected to cyclic loading in inelastic range. Przegląd Budowlany, nr 5, 141-143, 2012 [in Polish].Google Scholar

  • 25. J. MURZEWSKI, Theory of random load carrying capacity of rod structures, Studia z Zakresu Inżynierii, Nr. 15, KILiW PAN-PWN, Warszawa 1976 [in Polish].Google Scholar

  • 26. A. M. BARSZCZ, M. A. GIŻEJOWSKI, A generalized M-R-M approach for modelling of the stability behaviour of imperfect steel elements and structures, Archives of Civil Engineering, 52, 1, 59-85, 2006.Google Scholar

  • 27. A. M. BARSZCZ, M. A. GIZEJOWSKI, An Equivalent Stiffness Approach for Modeling the behavior of Compression Members According to Eurocode 3, Journal of Constructional Steel Research, 63, 1, 55-70, 2007.Web of ScienceGoogle Scholar

  • 28. PN-3200/B-03200: Steel structures: Static calculations and design. PKNMiJ; Warszawa 1994.Google Scholar

  • 29. EN 1993-1-1, Eurocode 3: Design of steel structures. Part 1-1: General rules and rules for buildings, Brussels: CEN, 2005.Google Scholar

  • 30. A. BARSZCZ, M. GIŻEJOWSKI, Buckling modes and computational models of compressed bracing members. Inżynieria i Budownictwo, nr 9, 497-502, 2013 [in Polish].Google Scholar

  • 31. A. M. BARSZCZ, Modelling an d experimental investigations of the behaviour of angle bracing strut in steel frame. Proceedings of Local Seminar of IASS Polish Chapter: Lightweight Structures in Civil Engineering [ed. J.B. Obrębski], Warsaw: Micro-Publisher, 106-113, 2007.Google Scholar

  • 32. A. M. BARSZCZ, Experimental investigations of braced frame system, Inżynieria i Budownictwo, nr 7, 380-384, 2010 [in Polish].Google Scholar

  • 33. A. M. BARSZCZ, Investigation into the modelling of angle brace member. Proceedings of Local Seminar of IASS Polish Chapter: Lightweight Structures in Civil Engineering [ed. J.B. Obrębski], Warsaw: Micro-Publisher, 54-65, 2012.Google Scholar

About the article

Received: 2013-12-14

Revised: 2014-02-27

Published Online: 2014-03-12

Published in Print: 2014-03-01

Citation Information: Archives of Civil Engineering, Volume 60, Issue 1, Pages 3–39, ISSN (Online) 1230-2945, DOI: https://doi.org/10.2478/ace-2014-0001.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in