Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Archives of Civil Engineering

The Journal of Polish Academy of Sciences

4 Issues per year


SCImago Journal Rank (SJR): 0.251
Source Normalized Impact per Paper (SNIP): 0.521

Open Access
Online
ISSN
1230-2945
See all formats and pricing
In This Section

Shapes Of Energy-Active Segments Of Steel Buildings

Kształtowanie energoaktywnych segmentów hal

Z. Kowal
  • Department of Mechanics, Metal Structures and Computer Methods, Faculty of Civil Engineering and Architecture, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Email:
/ M. Siedlecka
  • Department of Mechanics, Metal Structures and Computer Methods, Faculty of Civil Engineering and Architecture, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Email:
/ R. Piotrowski
  • Department of Mechanics, Metal Structures and Computer Methods, Faculty of Civil Engineering and Architecture, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Email:
/ K. Brzezińska
  • Department of Mechanics, Metal Structures and Computer Methods, Faculty of Civil Engineering and Architecture, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Email:
/ K. Otwinowska
  • Department of Mechanics, Metal Structures and Computer Methods, Faculty of Civil Engineering and Architecture, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Email:
/ A. Szychowski
  • Department of Mechanics, Metal Structures and Computer Methods, Faculty of Civil Engineering and Architecture, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Email:
Published Online: 2015-10-26 | DOI: https://doi.org/10.1515/ace-2015-0029

Abstract

The study presents the summary of the knowledge of energy-active segments of steel buildings adapted to obtain electrical energy (EE) and thermal energy (TE) from solar radiation, and to transport and store TE. The study shows a general concept of the design of energy-active segments, which are separated from conventional segments in the way that allows the equipment installation and replacement. Exemplary solutions for the design of energy-active segments, optimised with respect to the principle of minimum thermal strain and maximum structural capacity and reliability were given [34]. The following options of the building covers were considered: 1) regular structure, 2) reduced structure, 3) basket structure, 4) structure with a tie, high-pitched to allow snow sliding down the roof to enhance TE and EE obtainment. The essential task described in the study is the optimal adaptation of energy-active segments in large-volume buildings for extraction, transportation and storage of energy from solar radiation.

W pracy zamieszczono podsumowanie stanu wiedzy na temat koncepcji konstrukcji energoaktywnych segmentów hal, przystosowanych do pozyskiwania energii elektrycznej (EE) i energii cieplnej (EC) z promieniowania słonecznego oraz transportu i magazynowania EC. Pokazano generalną koncepcję konstrukcji energoaktywnych segmentów hal oddylatowanych od segmentów konwencjonalnych w sposób umożliwiający rozmieszczenie i wymianę wyposażenia. Pokazano przykładowe koncepcje konstrukcji segmentów energoaktywnych, zoptymalizowane wg minimaksowej zasady: minimum termicznego wytężenia, maksimum nośności i niezawodności konstrukcji [34].

Optymalizację przeprowadzono poprzez rozdzielenie globalnych kinematycznie dopuszczalnych mechanizmów zniszczenia (KDMZ) przekryć hal i KDMZ słupów oraz zachowanie w oddylatowanych segmentach energoaktywnych minimum 4 równoległych sprzężeń zasadniczych elementów konstrukcji wg [34]. W przypadku równoległego sprzężenia minimum n=4 głównych elementów sprawczych występuje trend zwiększenia nośności ponad normową [39] nośność obliczeniową wg wzoru [34] (3.1): s=(1t2ν1n)1t2ν1(3.1) gdzie:

t2

– wskaźnik niezawodności wg [39];

v1

– współczynnik zmienności nośności sprzęganych elementów;

n

– liczba „jednakowych” elementów sprzężonych.

Pracę zilustrowano koncepcjami energoaktywnych segmentów konstrukcji hal przekrytych:

  1. strukturą regularną,

  2. strukturą zredukowaną,

  3. regularną strukturą koszową,

  4. strukturą zredukowaną ze ściągiem o spadkach umożliwiających samoczynne zsuwanie się śniegu z połaci dachowych w celu zwiększenia pozyskiwanej EC i EE.

Generalną zaletą stosowania struktur prętowych, obliczanych na podstawie norm przedmiotowych [42], w energoaktywnych segmentach konstrukcji hal o dostatecznej liczbie oczek liczonych wzdłuż hali jest to, że nośność i niezawodność wydzielonych segmentów hali jest większa od zalecanej w normie [39]. Dotyczy to segmentów szerokości minimum 4 oczek w przypadku struktur regularnych, natomiast w przypadku struktur zredukowanych szerokości minimum 7 oczek.

Zasadniczym zadaniem w pracy jest optymalne przystosowanie energoaktywnych segmentów konstrukcji wielkopowierzchniowych hal do pozyskiwania, transportu i magazynowania energii pozyskiwanej z promieniowania słonecznego.

Keywords: energy-active cover; energy-active steel building; probabilistic optimisation; expansion segment; energy-active segment; thermal energy (TE); electrical energy (EE)

Keywords: przekrycie energoaktywne; hala energoaktywna; probabilistyczna optymalizacja; segment dylatacyjny; segment energoaktywny; EC - energia cieplna; EE - energia elektryczna

References

  • 1 Kowal Z., Szychowski A.: Energy-active arch structures as roof covers (in Polish), 38 KN KILiW PAN i KN PZITB, Krynica 1992, pp. 47-52.

  • 2 Kowal Z., Szychowski A.: Structures spatiales energoactives, Int. Seminar on Structural Morphology, Montpellier 7-11.09.1992, France, pp. 370-378.

  • 3 Kowal Z., Szychowski A.: Energy-active spatial structures (in Polish), Inż. i Bud. 1/1993, pp. 3-5.

  • 4 Kowal Z., Malec M.: Steel energy-active girders as elements of load-carrying structures, Harmony with Nature, Ises Solar World Congress, Budapest 1993, pp.756-756.

  • 5 Kowal Z, Szychowski A.: Solar structures in the construction of halls, Solar World Congress, Budapest 1993.

  • 6 Kowal Z., Szychowski A.: Energy-active arch covers (in Polish), Inż. i Bud. 6/1994.

  • 7 Kowal Z., Szychowski A.: Solar structures in steel building construction (in Polish), Inż. i Bud. 9/1995, pp. 491-493.

  • 8 Kowal Z., Malec M.: Triple-chord energy-active girders with water transportation (in Polish), Conference materials „Budownictwo Ekologiczne”. Wydawnictwo Politechniki Częstochowskiej, Częstochowa 1995, pp.21-27.

  • 9 Kowal Z., Mirski J.Z.: Two-layer bar domes in the construction of warehouses and solar drying plants (in Polish), Konferencja Naukowo-Techniczna „Budownictwo ogólne”, Bydgoszcz, 12.06.2000, pp.73-80.

  • 10 Kowal Z., Szychowski A., Patent No. 166877 Spatial building structure for thermal energy extraction (in Polish), UP RP Warszawa 1995.

  • 11 Kowal Z., Szychowski A., Patent No. 168709 Building arch covers for thermal energy extraction (in Polish). UP RP Warszawa 1996.

  • 12 Kowal Z., Szychowski A., Patent No. 182933 Truss-purlin roof for thermal energy extraction (in Polish). UP RP Warszawa 2002.

  • 13 Kowal Z., Mirski J.Z., Patent P-339957, Two-layer bar dome covers for thermal energy extraction, UP RP Warszawa 2007.

  • 14 Szychowski A., Patent No. 202436 Flat roof for thermal energy extraction (in Polish), UP RP Warszawa 2009.

  • 15 Siedlecka M., Szychowski A.: Design of steel building cover from solid steel elements for thermal energy extraction (in Polish), Patent application PL405341A1 of 16.09.2013, BUP 20/2014, pp. 31-32.

  • 16 Kowal Z., Piotrowski R., Szychowski A.: Rigidity of hipped roof end bar structures with square meshes (in Polish), Zeszyty Naukowe Politechniki Rzeszowskiej Nr 276, Seria: Budownictwo i Inżynieria Środowiska, Zeszyt 58, Nr 3/2011/II, pp. 249-256.

  • 17 Kowal Z.: Probabilistic optimisation of the capacity of steel columns of conventional steel buildings (in Polish), Zeszyty Naukowe Politechniki Rzeszowskiej Nr 283, Seria: Budownictwo i Inżynieria Środowiska, Zeszyt 59, Nr 3/2012/II, pp. 185-192.

  • 18 Kowal Z., Otwinowska K., Szychowski A.: Rigidity of hipped roof end truss-purlin steel buildings adapted for thermal energy extraction from solar radiation (in Polish), Zeszyty Naukowe Politechniki Rzeszowskiej Nr 283, Seria: Budownictwo i Inżynieria Środowiska, Zeszyt 59, Nr 3/2012/II, pp. 193-200.

  • 19 Kowal Z., Piotrowski R., Szychowski A.: Adaptation of steel buildings covered with a structure adapted for thermal energy extraction from solar radiation (in Polish), Zeszyty Naukowe Politechniki Rzeszowskiej Nr 283, Seria: Budownictwo i Inżynieria Środowiska, Zeszyt 59, Nr 2/2012/II, pp. 431-438.

  • 20 Kowal Z., Piotrowski R.: Energy-active expansion segments of steel buildings with structural cover (in Polish), Budownictwo i Architektura, 2013, 12 (2), pp. 121-128.

  • 21 Otwinowska K., Piotrowski R.: Adaptation of selected steel buildings for thermal energy absorption from solar radiation (in Polish) in: Wybrane problemy naukowo-badawcze budownictwa i inżynierii środowiska, dr. inż. Andrzej Dzięgielewski (editor), Część IV Analiza energetyczna obiektów budowlanych oraz pozyskiwanie energii ze źródeł odnawialnych, 2013, pp. 281-292

  • 22 Kowal Z., Siedlecka M.: Energy-active segments of self-clearing cover of steel buildings (in Polish), Conference materials XXI Interdyscyplinarna Ogólnopolska Konferencja Naukowo-Techniczna “Ekologia a Budownictwo”, Bielsko-Biała, 10-12 Oct 2013, pp. 161-168.

  • 23 Kowal Z., Piotrowski R.: Energy-active segments of steel buildings covered with a regular basket structure (in Polish), Journal of Civil Engineering, Environment and Architecture, t. XXXII, z. 62 (2/15), April-June 2015, pp. 189-196.

  • 24 Brzezińska K., Kowal Z.: Temperature impact on kinematically admissible failure mechanisms of energy-active segments of steel buildings (in Polish), Konferencja Naukowo-Techniczna – Konstrukcje Metalowe ZK2014, Kielce-Suchedniów 2014, pp. 19-22.

  • 25 Kowal Z., Piotrowski R., Siedlecka M.: Secured energy-active segment of the steel building, covered with reduced structure with a tie (in Polish), Konferencja Naukowo-Techniczna – Konstrukcje Metalowe ZK2014, Kielce-Suchedniów 2014, pp. 36-39.

  • 26 Kowal Z., Piotrowski R.: Energy-active expansion segments covered with regular structure with a tie (in Polish), paper accepted for 60 KN KILiW PAN i KN PZITB, Krynica 2014.

  • 27 Brzezińska K., Siedlecka M.: Truss-purlin Covering Fitted for Obtaining Solar Energy, Conference materials TRANSCOM 2013, 10th European Conference of Young Researchers and Scientists, Section 7: Civil Engineering, Žilina 24-26 June 2013, pp. 19-22.

  • 28 Otwinowska K., Piotrowski R.: Comparison of roof rigidity for selected energy-efficient structures, Conference materials TRANSCOM 2013, 10th European Conference of Young Researchers and Scientists, Section 7: Civil Engineering, Žilina 24-26 czerwca 2013, pp. 225-228.

  • 29 Kowal Z., Piotrowski R., Siedlecka M.: Comparative analysis of the reliability of energy-active covers of hall segments, Conference materials II Międzynarodowa Polsko-Ukraińska Konferencja Naukowo-Techniczna Aktualne Problemy Konstrukcji Metalowych, Gdańsk 27-28.11.2014, pp. 123-126.

  • 30 Kowal Z.: The formation of space bar structures supported by the system reliability theory, Archives of Civil and Mechanical Engineering Vol. XI, No. 1, 2011, pp. 115 – 133.

  • 31 Kowal Z.: Hazards associated with the load-bearing capacity of bar space structures during assembly and performance, Promysłowe Budiwnictwo Ta Inżenerni Sporudy 3/2011, pp. 34-40.

  • 32 Kowal Z.: Probabilistic optimisation of the bearing capacity of conventional hall coverings, Structure and Enviroment, 2011, 3, pp. 10-19.

  • 33 Kowal Z.: On Adjusting the Load Bearing Capacity of Decisive Members to Reliability Classes of Statically Determinate Complex Structures, Archives of Civil Engineering, Volume LIX, Issue 1, pp. 131–142.

  • 34 Kowal Z.: Instruments of probabilistic optimization of load bearing capacity and reliability of statically indeterminate complex structures, Archives of Civil Engineering, Volume LX, Issue 1, 2014, pp. 77–90.

  • 35 Kowal Z., Szychowski A.: Patent No. PL 215515 B1. Construction of nodes of trusses from closed square or rectangular sections (in Polish), decision of 25-06-2013.

  • 36 Kowal Z., Szychowski A.: Patent No. PL 219778 B1. Device for extraction and storage of thermal energy (in Polish), decision of. 12-11-2014.

  • 37 Chwieduk D.: Solar energy in a building (in Polish), Arkady, Warszawa 2011.

  • 38 Wołoszyn M. A.: Solar energy use in single-family houses (in Polish), Centralny Ośrodek Informacji Budownictwa, Warszawa 1991.

  • 39 PN-EN 1990: 2004 Eurocode. Basis of structural design.

  • 40 Kowal Z., Polak M., Szpila E., Wydra PP.: Spatial cover system “Zachód” (in Polish), Inżynieria i Budownictwo, 11/1976, pp. 421-424.

  • 41 Kowal Z., Polak M., Szpila E., Wydra PP.: Spatial bar covers of industrial buildings with spans of 18, 24, 30, 36m in accordance with the “Zachód” system (in Polish), Inżynieria i Budownictwo, 3/1977, pp. 82-82.

  • 42 PN-EN 1993-1-1:2006 Eurocode 3. Design of steel structures. Part 1-1. General rules and rules for buildings.

About the article

Received: 2015-08-25

Revised: 2015-09-25

Published Online: 2015-10-26

Published in Print: 2015-09-01



Citation Information: Archives of Civil Engineering, ISSN (Online) 1230-2945, DOI: https://doi.org/10.1515/ace-2015-0029. Export Citation

© 2015 Polish Academy of Sciences. This article is distributed under the terms of the Creative Commons Attribution 4.0 Public License. (CC BY 4.0)

Comments (0)

Please log in or register to comment.
Log in