Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Geophysica

6 Issues per year


IMPACT FACTOR 2016: 0.968
5-year IMPACT FACTOR: 1.270

Cite Score 2016: 1.06

SCImago Journal Rank (SJR) 2016: 0.401
Source Normalized Impact per Paper (SNIP) 2016: 0.901

Open Access
Online
ISSN
1895-7455
See all formats and pricing
More options …
Volume 56, Issue 3 (Sep 2008)

Issues

The spatial organisation of time-averaged streamwise velocity and its correlation with the surface topography of water-worked gravel beds

James Cooper / Simon Tait
Published Online: 2008-07-01 | DOI: https://doi.org/10.2478/s11600-008-0023-0

Abstract

An examination was made into the spatial pattern of time-averaged streamwise velocity in the near-bed region over two water-worked gravel beds. Laboratory observations revealed that there is considerable spatial variability in velocity. It was organised into streamwise streaks of high-speed fluid which were overlain by spots of low-speed fluid. This spatial pattern was found to be consistently and heavily dependent on relative submergence. The spatial pattern of velocity was shown to have little linear coherence with bed surface topography at the grain-scale. It suggested that for flows above the two beds studied here, bed surface topography at the grain-scale exerted less of an influence on the spatial organisation of time-averaged streamwise velocities than relative submergence.

Keywords: streamwise velocity; spatial organisation; water-worked gravel beds; bed surface topography; laboratory flume

  • [1] Barison, S., A. Chegini, A. Marion, and S.J. Tait (2003), Modifications in near bed flow over sediment beds and the implications for grain entrainment, Proceedings of XXX IAHR Congress, Thessalonki, Greece, 509–516. Google Scholar

  • [2] Buffin-Bélanger, T., and A.G. Roy (1998), Effects of a pebble cluster on the turbulent structure of a depth-limited flow in a gravel-bed river, Geomorphology 25, 3–4, 249–267. http://dx.doi.org/10.1016/S0169-555X(98)00062-2CrossrefGoogle Scholar

  • [3] Campbell, L., I. McEwan, V. Nikora, D. Pokrajac, M. Gallagher, and C. Manes (2005), Bed-load effects on hydrodynamics of rough-bed open-channel flows, J. Hydraul. Eng. ASCE 131, 7, 576–585. http://dx.doi.org/10.1061/(ASCE)0733-9429(2005)131:7(576)CrossrefGoogle Scholar

  • [4] Carling, P.A., Z.X. Cao, M.J. Holland, D.A. Ervine, and K. Babaeyan-Koopaei (2002), Turbulent flow across a natural compound channel, Water Resour. Res. 38, 12, 6–11. http://dx.doi.org/10.1029/2001WR000902CrossrefGoogle Scholar

  • [5] Clifford, N.J. (1996), Morphology and stage-dependent flow structure in a gravelbed river. In: P.J. Ashworth, S.J. Bennett, J.L. Best, and S.J. McLelland (eds.), Coherent Flow Structures in Open Channels, John Wiley & Sons, Chichester, 545–566. Google Scholar

  • [6] Coceal, O., T.G. Thomas, I.P. Castro, and S.E. Belcher (2006), Mean flow and turbulence statistics over groups of urban-like cubical obstacles, Bound.-Layer Meteor. 121, 491–519. http://dx.doi.org/10.1007/s10546-006-9076-2CrossrefGoogle Scholar

  • [7] Coleman, S.E., V.I. Nikora, S.R. McLean, T.M. Clunie, T. Schlicke, and B.W. Melville (2006), Equilibrium hydrodynamics concept for developing dunes, Phys. Fluids 18, 10, DOI: 10.1063/1061.2358332. CrossrefGoogle Scholar

  • [8] Cooper, J.R. (2006), Spatially-induced momentum transfer over water-worked gravel beds, PhD Thesis, University of Sheffield, Sheffield, UK. Google Scholar

  • [9] Dantec (2000), Flow Map Particle Image Velocimetry Instrumentation: Installation and Users Guide, Dantec Measurement Technology, Skovlunde. Google Scholar

  • [10] Defina, A. (1996), Transverse spacing of low-speed streaks in a channel flow over a rough bed. In: P.J. Ashworth, S.J. Bennett, J.L. Best, and S.J. McLelland (eds.), Coherent Flow Structures in Open Channels, John Wiley & Sons, Chichester, 87–99. Google Scholar

  • [11] Drobinski, P., and R.C. Foster (2003), On the origin of near-surface streaks in the neutrally-stratified planetary boundary layer, Bound.-Layer Meteor. 108, 2, 247–256. http://dx.doi.org/10.1023/A:1024100125735CrossrefGoogle Scholar

  • [12] Falco, R.E. (1977), Coherent motions in outer region of turbulent boundary-layers, Phys. Fluids 20, 10, S124–S132. http://dx.doi.org/10.1063/1.861721CrossrefGoogle Scholar

  • [13] Grass, A.J., and M. Mansour-Tehrani (1996), Generalized scaling of coherent bursting structures in the near-wall region of turbulent flow over smooth and rough boundaries. In: P.J. Ashworth, S.J. Bennett, J.L. Best, and S.J. McLelland (eds.), Coherent Flow Structures in Open Channels, John Wiley & Sons, Chichester, 40–61. Google Scholar

  • [14] Grass, A.J., R.J. Stuart, and M. Mansour-Tehrani, 1991, Vortical structures and coherent motion in turbulent-flow over smooth and rough boundaries, Phil. Trans. Roy. Soc. Lond. A 336, 1640, 35–65. http://dx.doi.org/10.1098/rsta.1991.0065CrossrefGoogle Scholar

  • [15] Kanda, M., R. Moriwaki, and F. Kasamatsu (2004), Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays, Bound.-Layer Meteor. 112, 2, 343–368. http://dx.doi.org/10.1023/B:BOUN.0000027909.40439.7cCrossrefGoogle Scholar

  • [16] Kırkgoz, M.S., and M. Ardıçlıoğlu (1997), Velocity profiles of developing and developed open channel flow, J. Hydraul. Eng. ASCE 123, 12, 1099–1105. http://dx.doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1099)CrossrefGoogle Scholar

  • [17] Kironoto, B.A., and W.H. Graf (1994), Turbulence characteristics in rough uniform open channel flow, Proc. Inst. Civil Engineers: Water Maritime and Energy 106, 4, 333–344. http://dx.doi.org/10.1680/iwtme.1994.27234CrossrefGoogle Scholar

  • [18] Klewicki, J.C., M.M. Metzger, E. Kelner, and E.M. Thurlow (1995), Viscous sublayer flow visualizations at Rθ ≈ 1 500 000, Phys. Fluids 7, 4, 857–863. http://dx.doi.org/10.1063/1.868763CrossrefGoogle Scholar

  • [19] Kline, S.J., W.C. Reynolds, F.A. Schraub, and P.W. Runstadler (1967), The structure of turbulent boundary layers, J. Fluid Mech. 30, 741–773. http://dx.doi.org/10.1017/S0022112067001740CrossrefGoogle Scholar

  • [20] Kovasznay, L.S., V. Kibens, and R.F. Blackwelder (1970), Large-scale motion in intermittent region of a turbulent boundary layer, J. Fluid Mech. 41, 283–325. http://dx.doi.org/10.1017/S0022112070000629CrossrefGoogle Scholar

  • [21] Lamarre, H., and A.G. Roy (2005), Reach scale variability of turbulent flow characteristics in a gravel-bed river, Geomorphology 68, 95–113. http://dx.doi.org/10.1016/j.geomorph.2004.09.033CrossrefGoogle Scholar

  • [22] Lane, S.N., R.J. Hardy, L. Elliott, and D.B. Ingham (2002), High-resolution numerical modelling of three-dimensional flows over complex river bed topography, Hydrol. Process. 16, 11, 2261–2272. http://dx.doi.org/10.1002/hyp.5034CrossrefGoogle Scholar

  • [23] Lane, S.N., R.J. Hardy, L. Elliott, and D.B. Ingham (2004), Numerical modeling of flow processes over gravelly surfaces using structured grids and a numerical porosity treatment, Water Resour. Res. 40, DOI: 40:W01302JAN82004. Google Scholar

  • [24] Lawless, M., and A. Robert (2001), Scales of boundary resistance in coarse-grained channels: turbulent velocity profiles and implications, Geomorphology 39, 3–4, 221–238. http://dx.doi.org/10.1016/S0169-555X(01)00029-0CrossrefGoogle Scholar

  • [25] Legleiter, C.J., T.L. Phelps, and E.E. Wohl (2007), Geostatistical analysis of the effects of stage and roughness on reach-scale spatial patterns of velocity and turbulence intensity, Geomorphology 83, 322–345. http://dx.doi.org/10.1016/j.geomorph.2006.02.022Web of ScienceCrossrefGoogle Scholar

  • [26] Lien, F.S., and E. Yee (2004), Numerical modelling of the turbulent flow developing within and over a 3-D building array, part I: a high-resolution Reynoldsaveraged Navier-Stokes approach, Bound.-Layer Meteor. 112, 3, 427–466. http://dx.doi.org/10.1023/B:BOUN.0000030654.15263.35CrossrefGoogle Scholar

  • [27] McLelland, S.J., P.J. Ashworth, J.L. Best, and J.R. Livesey (1999), Turbulence and secondary flow over sediment stripes in weakly bimodal bed material, J. Hydraul. Eng. ASCE 125, 5, 463–473. http://dx.doi.org/10.1061/(ASCE)0733-9429(1999)125:5(463)CrossrefGoogle Scholar

  • [28] Nezu, I., and H. Nakagawa (1993), Turbulence in Open Channel Flows, Balkema, Rotterdam, 281 pp. Google Scholar

  • [29] Nikora, V., D. Goring, I. McEwan, and G. Griffiths (2001), Spatially averaged openchannel flow over rough bed, J. Hydraul. Eng. ASCE 127, 2, 123133. Google Scholar

  • [30] Paola, C., G. Parker, R. Seal, S.K. Sinha, J.B. Southard, and P.R. Wilcock (1992), Downstream fining by selective deposition in a laboratory flume, Science 258, 1757–1760. http://dx.doi.org/10.1126/science.258.5089.1757CrossrefGoogle Scholar

  • [31] Papanicolaou, A.N., and R. Hilldale (2002), Turbulence characteristics in gradual channel transition, J. Eng. Mech. ASCE 128, 9, 948–960. http://dx.doi.org/10.1061/(ASCE)0733-9399(2002)128:9(948)CrossrefGoogle Scholar

  • [32] Pokrajac, D., L.J. Campbell, V. Nikora, C. Manes, and I. McEwan (2007), Quadrant analysis of persistent spatial velocity perturbations over square-bar roughness, Exp. Fluids 42, 3, 413–423. http://dx.doi.org/10.1007/s00348-006-0248-0Web of ScienceCrossrefGoogle Scholar

  • [33] Roy, A.G., T. Buffin-Belanger, H. Lamarre, and A.D. Kirkbride (2004), Size, shape and dynamics of large-scale turbulent flow structures in a gravel-bed river, J. Fluid Mech. 500, 1–27. http://dx.doi.org/10.1017/S0022112003006396CrossrefGoogle Scholar

  • [34] Sambrook Smith, G.H.S., and A.P. Nicholas (2005), Effect on flow structure of sand deposition on a gravel bed: Results from a two-dimensional flume experiment, Water Resour. Res. 41, 10, DOI: 10:1029/2004WR003817. Google Scholar

  • [35] Schoppa, W., and F. Hussain (2002), Coherent structure generation in near-wall turbulence, J. Fluid Mech. 453, 57–108. http://dx.doi.org/10.1017/S002211200100667XCrossrefGoogle Scholar

  • [36] Seal, R., C. Paola, G. Parker, J.B. Southard, and P.R. Wilcock (1997), Experiments on downstream fining of gravel: 1. Narrow-channel runs, J. Hydraul. Eng. ASCE 123, 10, 874–884. http://dx.doi.org/10.1061/(ASCE)0733-9429(1997)123:10(874)CrossrefGoogle Scholar

  • [37] Smith, C.R. (1996), Coherent flow structures in smooth-wall turbulent boundary layers: facts, mechanisms and speculation. In: P.J. Ashworth, S.J. Bennett, J.L. Best, and S.J. McLelland (eds.), Coherent Flow Structures in Open Channels, John Wiley & Sons, Chichester, 1–39. Google Scholar

  • [38] Smith, C.R., and S.P. Metzler (1983), The characteristics of low-speed streaks in the near wall region of a turbulent boundary-layer, J. Fluid Mech. 129, 27–54. http://dx.doi.org/10.1017/S0022112083000634CrossrefGoogle Scholar

  • [39] Smith, C.R., and S.P. Schwartz (1983), Observation of streamwise rotation in the near-wall region of a turbulent boundary-layer, Phys. Fluids 26, 3, 641–652. http://dx.doi.org/10.1063/1.864178CrossrefGoogle Scholar

  • [40] Smith, C.R., J.D.A. Walker, A.H. Haidari, and U. Soburn (1991), On the dynamics of near-wall turbulence, Phil. Trans. Roy. Soc. Lond. A 336, 131–175. http://dx.doi.org/10.1098/rsta.1991.0070CrossrefGoogle Scholar

  • [41] Song, T., U. Lemmin, and W.H. Graf (1994), Uniform-flow in open channels with movable gravel-bed, J. Hydraul. Res. 32, 6, 861–876. CrossrefGoogle Scholar

  • [42] Tait, S.J., B.B. Willetts, and M.W. Gallagher (1996), The application of Particle Image Velocimetry to the study of coherent flow structures over a stabilizing sediment bed. In: P.J. Ashworth, S.J. Bennett, J.L. Best, and S.J. McLelland (eds.), Coherent Flow Structures in Open Channels, John Wiley & Sons, Chichester, 184–201. Google Scholar

  • [43] Toro-Escobar, C.M., C. Paola, G. Parker, P.R. Wilcock, and J.B. Southard (2000), Experiments on downstream fining of gravel: II. wide and sandy runs, J. Hydraul. Eng. ASCE 126, 3, 198–208. http://dx.doi.org/10.1061/(ASCE)0733-9429(2000)126:3(198)CrossrefGoogle Scholar

  • [44] Tritico, H.M., and R.H. Hotchkiss (2005), Unobstructed and obstructed turbulent flow in gravel bed rivers, J. Hydraul. Eng. ASCE 131, 8, 635–645. http://dx.doi.org/10.1061/(ASCE)0733-9429(2005)131:8(635)CrossrefGoogle Scholar

  • [45] Westerweel, J. (1994), Efficient detection of spurious vectors in Particle Image Velocimetry data, Exp. Fluids 16, 3–4, 236–247. Google Scholar

About the article

Published Online: 2008-07-01

Published in Print: 2008-09-01


Citation Information: Acta Geophysica, ISSN (Online) 1895-7455, ISSN (Print) 1895-6572, DOI: https://doi.org/10.2478/s11600-008-0023-0.

Export Citation

© 2008 Institute of Geophysics, Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in