Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Geophysica

6 Issues per year

IMPACT FACTOR 2016: 0.968
5-year IMPACT FACTOR: 1.270

Cite Score 2016: 1.06

SCImago Journal Rank (SJR) 2016: 0.401
Source Normalized Impact per Paper (SNIP) 2016: 0.901

Open Access
See all formats and pricing
More options …
Volume 59, Issue 1 (Feb 2011)


The spatial and temporal distribution of marine geophysical surveys

Paul Wessel
  • Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Chandler
  • Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-11-24 | DOI: https://doi.org/10.2478/s11600-010-0038-1


We examine how bathymetric mapping coverage varies with distance from the coastline, here a proxy for the effort involved in collecting the data. Distances to the nearest coastline were evaluated on a 1′ × 1′ global grid. We evaluate the density of marine survey track lines, which falls off with increasing distance from the coastline and drops off precipitously for the most remote regions. Bathymetric coverage shows a marked asymmetry between the southern and northern hemispheres, the latter having a factor of 2–4 denser coverage. We find a rapid decrease in data acquisition for previously unexplored regions beginning in 1973–1975. This rate change may reflect a transition from serendipitous exploration to more targeted investigations as the plate tectonics hypothesis became accepted, but it could also reflect the 1970s oil shocks. Coverage of the seafloor varies logarithmically with mapping resolution. At 0.5° resolution, only ∼60% of the seafloor has been mapped; the 50% mark was reached in 1979 and coverage of unexplored seafloor has since been less rapid. For comparison, at 1′ resolution less than 10% of the seafloor has been mapped. Given rising fuel costs we predict the most remote areas will see a decline in future surveys. Better coordination of exploration among agencies and nations could mitigate this concern and improve global coverage, as could future altimetric mapping dedicated to bathymetric prediction.

Keywords: bathymetry; marine surveys

  • [1] ADD Consortium (2000), Antarctic Digital Database, Version 4.1. Database, Manual and Bibliography, Scientific Committee on Antarctic Research, Cambridge, UK, 93 pp. Google Scholar

  • [2] Becker, J.J., D.T. Sandwell, W.H.F. Smith, J. Braud, B. Binder, J. Depner, D. Fabre, J. Factor, S. Ingalls, S.-H. Kim, R. Ladner, K. Marks, S. Nelson, A. Pharaoh, R. Trimmer, J. Von Rosenberg, G. Wallace, and P. Weatherall (2009), Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS, Marine Geodesy 32, 4, 355–371, DOI: 10.1080/01490410903297766. http://dx.doi.org/10.1080/01490410903297766Web of ScienceCrossrefGoogle Scholar

  • [3] Chandler, M.T., and P. Wessel (2008), Improving the quality of marine geophysical track line data: Along-track analysis, J. Geophys. Res. 113, B02102, DOI: 10.1029/2007JB005051. http://dx.doi.org/10.1029/2007JB005051Web of ScienceCrossrefGoogle Scholar

  • [4] Corfield, R. (2003), The Silent Landscape: The Scientific Voyage of HMS Challenger, Joseph Henry Press, London, 285 pp. Google Scholar

  • [5] Dalton, R. (2009), Sonar mapping ventures into uncharted waters, Nature 458, 7238, 557, DOI: 10.1038/458557a. http://dx.doi.org/10.1038/458557aWeb of ScienceCrossrefGoogle Scholar

  • [6] Gross, M.G. (1987), Oceanography: A View of the Earth, Prentice-Hall Inc., Englewood Cliffs, NJ, 406 pp. Google Scholar

  • [7] Heezen, B.C. (1960), The rift in the ocean floor, Sci. Am. 203, 4, 98–110, DOI: 10.1038/scientificamerican1060-98. http://dx.doi.org/10.1038/scientificamerican1060-98CrossrefGoogle Scholar

  • [8] Hess, H.H. (1946), Drowned ancient islands of the Pacific Basin, Am. J. Sci. 244, 772–791. http://dx.doi.org/10.2475/ajs.244.11.772Google Scholar

  • [9] Hey, R. (1977), A new class of “pseudofaults” and their bearing on plate tectonics: A propagating rift model, Earth Planet. Sci. Lett. 37, 2, 321–325, DOI: 10.1016/0012-821X(77)90177-7. http://dx.doi.org/10.1016/0012-821X(77)90177-7CrossrefGoogle Scholar

  • [10] Mammerickx, J. (1992), The Foundation Seamounts: Tectonic setting of a newly discovered seamount chain in the South Pacific, Earth Planet. Sci. Lett. 113, 3, 293–306, DOI: 10.1016/0012-821X(92)90135-I. http://dx.doi.org/10.1016/0012-821X(92)90135-ICrossrefGoogle Scholar

  • [11] Marks, K.M., D.C. McAdoo, and D.T. Sandwell (1991), Geosat GM data reveal new details of ocean floor, Eos Trans. AGU 72, 13, 145, DOI: 10.1029/90EO00107. http://dx.doi.org/10.1029/90EO00107CrossrefGoogle Scholar

  • [12] Menard, H.W. (1964), Marine Geology of the Pacific, McGraw-Hill, New York, 271 pp. Google Scholar

  • [13] Oliver, J. (1996), Shocks and Rocks: Seismology in the Plate Tectonic Revolution: The Story of Earthquakes and the Great Earth Science Revolution of the 1960s, American Geophysical Union, Washington, D.C., 139 pp. Google Scholar

  • [14] Oreskes, N. (ed.) (2002), Plate Tectonics: An Insider’s History of the Modern Theory of the Earth, Westview Press, Oxford, 448 pp. Google Scholar

  • [15] Raff, A.D., and R.G. Mason (1961), Magnetic survey off the west coast of North America, 40°N. latitude to 52.5°N. latitude, Geol. Soc. Am. Bull. 72, 8, 1267–1270, DOI: 10.1130/0016-7606(1961)72[1267:MSOTWC]2.0.CO;2. http://dx.doi.org/10.1130/0016-7606(1961)72[1267:MSOTWC]2.0.CO;2CrossrefGoogle Scholar

  • [16] Renka, R.J. (1997), Algorithm 772: STRIPACK: Delauney triangulation and Voronoi diagram on the surface of a sphere, ACM Trans. Math. Software 23, 3, 416–434, DOI: 10.1145/275323.275329. http://dx.doi.org/10.1145/275323.275329CrossrefGoogle Scholar

  • [17] Ryan, W.B.F., S.M. Carbotte, J.O. Coplan, S. O’Hara, A. Melkonian, R. Arko, R.A. Weissel, V. Ferrini, A. Goodwillie, F. Nitsche, J. Bonczkowski, and R. Zemsky (2009), Global Multi-Resolution Topography synthesis, Geochem. Geophys. Geosyst. 10, 3, Q03014,: doi:10.1029/2008GC002332. http://dx.doi.org/10.1029/2008GC002332Web of ScienceCrossrefGoogle Scholar

  • [18] Sandwell, D.T., and W.H.F. Smith (2009), Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate, J. Geophys. Res. 114, B01411, DOI: 10.1029/2008JB006008. http://dx.doi.org/10.1029/2008JB006008CrossrefWeb of ScienceGoogle Scholar

  • [19] Sandwell, D.T., and P. Wessel (2010), Box 3: Seamount discovery tool aids navigation to uncharted seafloor features, Oceanography 23, 1, 34–36. Google Scholar

  • [20] Smith, D.E., M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Banerdt, T.C. Duxbury, M.P. Golombek, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, O. Aharonson, P.G. Ford, A.B. Ivanov, C.L. Johnson, P.J. McGovern, J.B. Abshire, R.S. Afzal, and X. Sun (2001), Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars, J. Geophys. Res. 106, E10, 23689–23722, DOI: 10.1029/2000JE001364. http://dx.doi.org/10.1029/2000JE001364CrossrefGoogle Scholar

  • [21] Smith, W.H.F. (1993), On the accuracy of digital bathymetric data, J. Geophys. Res. 98, B6, 9591–9603, DOI: 10.1029/93JB00716. http://dx.doi.org/10.1029/93JB00716CrossrefGoogle Scholar

  • [22] Smith, W.H.F. (1998), Seafloor tectonic fabric from satellite altimetry, Ann. Rev. Earth Planet. Sci. 26, 697–747, DOI: 10.1146/annurev.earth.26.1.697. http://dx.doi.org/10.1146/annurev.earth.26.1.697CrossrefGoogle Scholar

  • [23] Smith, W.H.F., and, D.T. Sandwell (1994), Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry, J. Geophys. Res. 99, B11, 21803–21824, DOI: 10.1029/94JB00988. http://dx.doi.org/10.1029/94JB00988CrossrefGoogle Scholar

  • [24] Smith, W.H.F., and D.T. Sandwell (1997), Global sea floor topography from satellite altimetry and ship depth soundings, Science 277, 5334, 1956–1962, DOI: 10.1126/science.277.5334.1956. http://dx.doi.org/10.1126/science.277.5334.1956CrossrefGoogle Scholar

  • [25] Soluri, E.A., and V.A. Woodson (1990), World vector shoreline, Int. Hydrograph. Rev. 67, 1, 27–35. Google Scholar

  • [26] Vogt, P.R., W.-Y. Jung, and D.J. Nagel (2000), GOMaP: A matchless resolution to start the new millennium, Eos Trans. AGU 81, 23, 254–258, DOI: 10.1029/00EO00180. http://dx.doi.org/10.1029/00EO00180CrossrefGoogle Scholar

  • [27] Wessel, P., and M.T. Chandler (2007), The mgd77 supplement to the generic mapping tools, Computers & Geosciences 33, 1, 62–75, DOI: 10.1016/j.cageo.2006.05.006. http://dx.doi.org/10.1016/j.cageo.2006.05.006CrossrefWeb of ScienceGoogle Scholar

  • [28] Wessel, P., and W.H.F. Smith (1996), A global, self-consistent, hierarchical, high-resolution shoreline database, J. Geophys. Res. 101, B4, 8741–8743, DOI: 10.1029/96JB00104. http://dx.doi.org/10.1029/96JB00104CrossrefGoogle Scholar

  • [29] Wessel, P., and W.H.F. Smith (1998), New, improved version of Generic Mapping Tools released, Eos Trans. AGU 79, 47, 579. http://dx.doi.org/10.1029/98EO00426Google Scholar

About the article

Published Online: 2010-11-24

Published in Print: 2011-02-01

Citation Information: Acta Geophysica, ISSN (Online) 1895-7455, ISSN (Print) 1895-6572, DOI: https://doi.org/10.2478/s11600-010-0038-1.

Export Citation

© 2010 Institute of Geophysics, Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in