Jump to ContentJump to Main Navigation
Show Summary Details

Acta Geophysica

6 Issues per year

IMPACT FACTOR 2015: 0.945
5-year IMPACT FACTOR: 1.061

SCImago Journal Rank (SJR) 2015: 0.581
Source Normalized Impact per Paper (SNIP) 2015: 0.779
Impact per Publication (IPP) 2015: 0.937

Open Access
See all formats and pricing
Volume 59, Issue 3 (Jun 2011)


A method of estimating the Moho density contrast with a tentative application of EGM08 and CRUST2.0

Lars Sjöberg
  • Royal Institute of Technology, Division of Geodesy, Stockholm, Sweden
  • Email:
/ Mohammad Bagherbandi
  • Royal Institute of Technology, Division of Geodesy, Stockholm, Sweden
  • Email:
Published Online: 2011-04-20 | DOI: https://doi.org/10.2478/s11600-011-0004-6


Based on Vening Meinez-Moritz global inverse isostatic problem, the Moho density contrast is formulated as that of finding a solution of a Fredholm integral equation of the first kind. We present solutions to this equation by combining global models of gravity (EGM08), topography (DTM2006) and seismic crust (CRUST2.0) to a resolution of 2°×2°. The test computations yielded Moho density contrasts ranging from 81.5 kg/m3 (in Pacific) to 988 kg/m3 (Tibet), with averages of 678 ± 78 and 334 ± 108 kg/m3 for continental and oceanic regions, respectively, and a global average of 448 ± 187 kg/m3. Estimated Moho depths range from 8 to 75 km with continental and oceanic averages of 36.6 ± 5.3 km and 12.9 ± 5.8 km, respectively, and a global average of 21 ± 12.5 km.

This article has its emphasis on the new theory, while significant corrections to computational results are expected in a forthcoming study, where the isostatic gravity anomaly will be reduced for several disturbing signals.

Keywords: density contrast; isostasy; Moho; topographic compensation

  • [1] Airy, G.B. (1855), On the computation of the effect of the attraction of mountainmasses, as disturbing the apparent astronomical latitude of stations in geodetic surveys, Philos. Trans. Roy. Soc. Lond. B 145, 101–104. http://dx.doi.org/10.1098/rstl.1855.0003

  • [2] Balmino, G., K. Lambeck, and W.M. Kaula (1973), A spherical harmonic analysis of the Earth’s topography, J. Geophys. Res. 78,2, 478–481, DOI: 10.1029/JB078i002p00478. http://dx.doi.org/10.1029/JB078i002p00478 [Crossref]

  • [3] Bassin, C., G. Laske, and T.G. Masters (2000), The current limits of resolution for surface wave tomography in North America, Eos Trans. AGU 81, F897.

  • [4] Bjerhammar, A. (1973), Theory of Errors and Generalized Matrix Inverses, Elsevier Scientific Publ., Amsterdam, 420 pp.

  • [5] Bott, M.H.P. (1971), The Interior of the Earth, Edward Arnold Publs., London, 316.

  • [6] Čadek, O., and Z. Martinec (1991), Spherical harmonic expansion of the Earth’s crustal thickness up to degree and order 30, Stud. Geophys. Geod. 35,3, 151–165, DOI: 10.1007/BF01614063. http://dx.doi.org/10.1007/BF01614063 [Crossref]

  • [7] Dziewonski, A.M., and D.L. Anderson (1981), Preliminary reference Earth model, Phys. Earth Planet. Inter. 25,4, 297–356, DOI: 10.1016/0031-9201(81)90046-7. http://dx.doi.org/10.1016/0031-9201(81)90046-7 [Crossref]

  • [8] Heiskanen, W.A., and H. Moritz (1967), Physical Geodesy, W.H. Freemann, San Francisco.

  • [9] Heiskanen, W.A., and F.A. Vening Meinesz (1958), The Earth and its Gravity Field, McGraw-Hill, New York.

  • [10] Kaban, M.K., P. Schwintzer, and C. Reigber (2004), A new isostatic model of the lithosphere and gravity field, J. Geodesy 78,6, 368–385, DOI: 10.1007/s00190-004-0401-6. http://dx.doi.org/10.1007/s00190-004-0401-6 [Crossref]

  • [11] Martinec, Z. (1993), A model of compensation of topographic masses, Surv. Geophys. 14,4–5, 525–535, DOI: 10.1007/BF00690575. http://dx.doi.org/10.1007/BF00690575 [Crossref]

  • [12] Martinec, Z. (1994), The density contrast at the Mohorovičič discontinuity, Geophys. J. Int. 117,2, 539–544, DOI: 10.1111/j.1365-246X.1994.tb03950.x. http://dx.doi.org/10.1111/j.1365-246X.1994.tb03950.x [Crossref]

  • [13] Meier, U., A. Curtis, and J. Trampert (2007), Global crustal thickness from neural network inversion of surface wave data, Geophys. J. Int. 169,2, 706–722, DOI: 10.1111/j.1365-246X.2007.03373.x. http://dx.doi.org/10.1111/j.1365-246X.2007.03373.x [Crossref] [Web of Science]

  • [14] Mooney, W.D., G. Laske, and T.G. Masters (1998), CRUST 5.1: A global crustal model at 5°×5°, J. Geophys Res. 103,B1, 727–747, DOI: 10.1029/97JB02122. http://dx.doi.org/10.1029/97JB02122 [Crossref]

  • [15] Moritz, H. (1990), The Figure of the Earth: Theoretical Geodesy and the Earth’s Interior, H. Wichmann Verlag, Karlsruhe.

  • [16] Pavlis, N.K., and J. Saleh (2004), Error propagation with geographic specificity for very high degree geopotential models. In: C. Jekeli, L. Bastos, and J. Fernandes (eds.), IAG Int. Symp. “Gravity Geoid and Space Missions”, 30 August - 3 September, 2004, Porto, Portugal, Springer, 149–154.

  • [17] Pavlis, N.K., S.A. Holmes, S.C. Kenyon, D. Schmidt, and R. Trimmer (2004), A preliminary gravitational model to degree 2160. In: C. Jekeli, L. Bastos, and J. Fernandes (eds.), IAG Int. Symp. “Gravity Geoid and Space Missions”, 30 August - 3 September, 2004, Porto, Portugal, Springer, 18–23.

  • [18] Pavlis, N.K., J.K. Factor, and S.A. Holmes (2006), Terrain-related gravimetric quantities computed for the next EGM. In: 1st Int. Symp. “International Gravity Service”, 28 August–1 September, 2006, Istanbul, Turkey.

  • [19] Pavlis, N.K., S.A. Holmes, S.C. Kenyon, and J.K. Factor (2008), An Earth gravitational model to degree 2160: EGM08. In: General Assembly of the European Geosciences Union, 13–18 April, 2008, Vienna, Austria.

  • [20] Pratt, J.H. (1855), On the attraction of the Himalaya Mountains, and of the elevated regions beyond them, upon the Plumb-line in India, Philos. Trans. Roy. Soc. Lond. B 145, 53–100. http://dx.doi.org/10.1098/rstl.1855.0002

  • [21] Rychert, C.A., and P.M. Shearer (2010), Resolving crustal thickness using SS waveform stacks, Geophys. J. Int. 180,3, 1128–1137, DOI: 10.1111/j.1365-246X.2009.04497.x. http://dx.doi.org/10.1111/j.1365-246X.2009.04497.x [Crossref] [Web of Science]

  • [22] Sjöberg, L.E. (2009), Solving Vening Meinesz-Moritz inverse problem in isostasy, Geophys. J. Int. 179, 1527–1536, DOI: 10.1111/j.1365-246X.2009.04397.x. http://dx.doi.org/10.1111/j.1365-246X.2009.04397.x [Crossref] [Web of Science]

  • [23] Tenzer, R., K. Hamayun, and P. Vajda (2009), Global maps of the CRUST 2.0 crustal components stripped gravity disturbances, J. Geophys. Res. 114, B05408, DOI: 10.1029/2008JB006016. http://dx.doi.org/10.1029/2008JB006016 [Web of Science]

  • [24] Vaniček, P., R. Tenzer, L.E. Sjöberg, Z. Martinec, and W.E. Featherstone (2004), New views of the spherical Bouguer gravity anomaly, Geophys. J. Int. 159,2, 460–472, DOI: 10.1111/j.1365-246X.2004.02435.x. http://dx.doi.org/10.1111/j.1365-246X.2004.02435.x [Crossref]

  • [25] Vening Meinesz, F.A. (1931), Une nouvelle méthode pour la réduction isostatique régionale de l’intensité de la pesanteur, Bull. Géod. 29,1, 33–51 (in French), DOI: 10.1007/BF03030038. http://dx.doi.org/10.1007/BF03030038 [Crossref]

About the article

Published Online: 2011-04-20

Published in Print: 2011-06-01

Citation Information: Acta Geophysica, ISSN (Online) 1895-7455, ISSN (Print) 1895-6572, DOI: https://doi.org/10.2478/s11600-011-0004-6. Export Citation

© 2011 Institute of Geophysics, Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

M. Abrehdary, L.E. Sjöberg, and M. Bagherbandi
Geophysical Journal International, 2016, Volume 204, Number 1, Page 262
Mohammad Bagherbandi and Mehdi Eshagh
Earth, Planets and Space, 2012, Volume 64, Number 11, Page 1053
Robert Tenzer, Wenjin Chen, and Shuanggen Jin
Pure and Applied Geophysics, 2015, Volume 172, Number 6, Page 1563
Robert Tenzer and Mohammad Bagherbandi
International Journal of Geosciences, 2012, Volume 03, Number 05, Page 918
M. Reguzzoni and D. Sampietro
International Journal of Applied Earth Observation and Geoinformation, 2015, Volume 35, Page 31
Mohammad Bagherbandi, Robert Tenzer, and Lars E. Sjöberg
Studia Geophysica et Geodaetica, 2014, Volume 58, Number 2, Page 227
H. M. I. Prasanna, W. Chen, and D. Gómez‐Ortiz
Pure and Applied Geophysics, 2014, Volume 171, Number 8, Page 1951
J.P. OʼDonnell and A.A. Nyblade
Earth and Planetary Science Letters, 2014, Volume 388, Page 143
M. Reguzzoni, D. Sampietro, and F. Sanso
Geophysical Journal International, 2013, Volume 195, Number 1, Page 222
Yu Huang, Viacheslav Chubakov, Fabio Mantovani, Roberta L. Rudnick, and William F. McDonough
Geochemistry, Geophysics, Geosystems, 2013, Volume 14, Number 6, Page 2003
M. van der Meijde, J. Julià, and M. Assumpção
Tectonophysics, 2013, Volume 609, Page 456
Mohammad Bagherbandi, Robert Tenzer, Lars E. Sjöberg, and Pavel Novák
Journal of Geodynamics, 2013, Volume 66, Page 25
A.R.A. Aitken, M.L. Salmon, and B.L.N. Kennett
Tectonophysics, 2013, Volume 609, Page 468
Robert Tenzer, Mohammad Bagherbandi, and Peter Vajda
Contributions to Geophysics and Geodesy, 2012, Volume 42, Number 1, Page 1
Robert Tenzer, Mohammad Bagherbandi, and Vladislav Gladkikh
Computational Geosciences, 2012, Volume 16, Number 4, Page 975
Mohammad Bagherbandi and Lars E. Sjöberg
Physics of the Earth and Planetary Interiors, 2012, Volume 200-201, Page 37
Mohammad Bagherbandi and Lars E. Sjöberg
Studia Geophysica et Geodaetica, 2012, Volume 56, Number 4, Page 935
Robert Tenzer, Vladislav Gladkikh, Pavel Novák, and Peter Vajda
Surveys in Geophysics, 2012, Volume 33, Number 5, Page 817
Mohammad Bagherbandi
Journal of Asian Earth Sciences, 2012, Volume 43, Number 1, Page 89
Mohammad Bagherbandi and Lars E. Sjöberg
Studia Geophysica et Geodaetica, 2011, Volume 55, Number 4, Page 641

Comments (0)

Please log in or register to comment.
Log in