Jump to ContentJump to Main Navigation
Show Summary Details

Acta Geophysica


IMPACT FACTOR 2015: 0.945
5-year IMPACT FACTOR: 1.061

SCImago Journal Rank (SJR) 2015: 0.581
Source Normalized Impact per Paper (SNIP) 2015: 0.779
Impact per Publication (IPP) 2015: 0.937

Open Access
Online
ISSN
1895-7455
See all formats and pricing

 


Select Volume and Issue
Loading journal volume and issue information...

A non-extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece)

1Earth Sciences Department, University College London, London, UK

2Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece

© 2012 Institute of Geophysics, Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Acta Geophysica. Volume 60, Issue 3, Pages 758–768, ISSN (Online) 1895-7455, ISSN (Print) 1895-6572, DOI: 10.2478/s11600-012-0011-2, April 2012

Publication History

Published Online:
2012-04-28

Abstract

In the present study, the spatiotemporal properties of the Aigion earthquake (15 June 1995) aftershock sequence are being studied using the concept of non-extensive statistical physics (NESP). The cumulative distribution functions of the inter-event times and the inter-event distances are being estimated for the data set which is assumed to be complete and the analysis yielded the thermodynamic q parameter to be qT = 1.58 and q r = 0.53 for the two distributions, respectively. The results fit rather well to the inter-event distances and times distributions, implying the complexity of the spatiotemporal properties of seismicity and the usefulness of NESP in investigating such phenomena. The temporal structure is also being discussed using the complementary to NESP approach of superstatistics, which is based on a superposition of ordinary local equilibrium statistical mechanics. The result indicates that very low degrees of freedom describe the temporal evolution of the Aigion earthquake aftershock seismicity.

Keywords: aftershock sequences; complexity; non-extensive statistical physics; Aigion earthquake; Gulf of Corinth rift

  • [1] Abe, S., and N. Suzuki (2003), Law for the distance between successive earthquakes, J. Geophys. Res. 108,B2, 2113, DOI: 10.1029/2002JB002220. http://dx.doi.org/10.1029/2002JB002220 [CrossRef]

  • [2] Abe, S., and N. Suzuki (2005), Scale-free statistics of time interval between successive earthquakes, Physica A 350,2–4, 588–596, DOI: 10.1016/j.physa.2004.10.040. http://dx.doi.org/10.1016/j.physa.2004.10.040 [CrossRef]

  • [3] Aki, K. (1965), Maximum likelihood estimate of b in the formula log N = a — bM and its confidence limits, Bull. Earthq. Res. Inst. Tokyo Univ. 43,2, 237–239.

  • [4] Ambraseys, N.N., and J.A. Jackson (1990), Seismicity and associated strain of central Greece between 1890 and 1988, Geophys. J. Int. 101,3, 663–708, DOI: 10.1111/j.1365-246X.1990.tb05577.x. http://dx.doi.org/10.1111/j.1365-246X.1990.tb05577.x [CrossRef]

  • [5] Beck, C. (2009), Recent developments in superstatistics, Brazilian J. Physics 39,2A, 357–363, DOI: 10.1590/S0103-97332009000400003. [Web of Science] [CrossRef]

  • [6] Beck, C., and E.G.D. Cohen (2003), Superstatistics, Physica A 322, 267–275, DOI: 10.1016/S0378-4371(03)00019-0. http://dx.doi.org/10.1016/S0378-4371(03)00019-0 [CrossRef]

  • [7] Bernard, P., P. Briole, B. Meyer, H. Lyon-Caen, J.-M. Gomez, C. Tiberi, C. Berge, R. Cattin, D. Hatzfeld, C. Lachet, B. Lebrun, A. Deschamps, F. Courboulex, C. Larroque, A. Rigo, D. Massonnet, P. Papadimitriou, J. Kassaras, D. Diagourtas, K. Makropoulos, G. Veis, E. Papazisi, C. Mitsakaki, V. Karakostas, E. Papadimitriou, D. Papanastassiou, M. Chouliaras, and G. Stavrakakis (1997), The Ms = 6.2, June 15, 1995 Aigion earthquake (Greece): evidence for low angle normal faulting in the Corinth rift, J. Seismol. 1,2, 131–150, DOI: 10.1023/A:1009795618839. http://dx.doi.org/10.1023/A:1009795618839 [CrossRef]

  • [8] Chernick, M.R. (1999), Bootstrap Methods: A Practitioner’s Guide, Wiley Series in Probability and Statistics, W.A. Shewhart (ed.), Wiley and Sons Inc., New York, 288 pp.

  • [9] Clarke, P.J., R.R. Davies, P.C. England, B.E. Parsons, H. Billiris, D. Paradissis, G. Veis, P.H. Denys, P.A. Cross, V. Ashkenazi, and R. Bingley (1997), Geodetic estimate of seismic hazard in the Gulf of Korinthos, Geophys. Res. Lett. 24,11, 1303–1306, DOI: 10.1029/97GL01042. http://dx.doi.org/10.1029/97GL01042 [CrossRef]

  • [10] Darooneh, A.H., and C. Dadashinia (2008), Analysis of the spatial and temporal distributions between successive earthquakes: Nonextensive statistical mechanics viewpoint, Physica A 387,14, 3647–3654, DOI: 10.1016/j.physa.2008.02.050. http://dx.doi.org/10.1016/j.physa.2008.02.050 [Web of Science] [CrossRef]

  • [11] Gutenberg, B., and C.F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34,4, 185–188.

  • [12] Lyra, M.L., and C. Tsallis (1998), Nonextensivity and multifractality in lowdimensional dissipative systems, Phys. Rev. Lett. 80,1, 53–56, DOI: 10.1103/PhysRevLett.80.53. http://dx.doi.org/10.1103/PhysRevLett.80.53 [CrossRef]

  • [13] Ogata, Y. (1983), Estimation of the parameters in the modified Omori formula for aftershock frequencies by the maximum likelihood procedure, J. Phys. Earth 31,2, 115–124, DOI: 10.4294/jpe1952.31.115. http://dx.doi.org/10.4294/jpe1952.31.115 [CrossRef]

  • [14] Omori, F. (1894), On the aftershocks of earthquakes, J. Coll. Sci. Imp. Univ. Tokyo 7, 111–200.

  • [15] Telesca, L. (2010a), A non-extensive approach in investigating the seismicity of L’Aquila area (central Italy), struck by the 6 April 2009 earthquake (ML = 5.8), Terra Nova 22,2, 87–93, DOI: 10.1111/j.1365-3121.2009.00920.x. http://dx.doi.org/10.1111/j.1365-3121.2009.00920.x [Web of Science] [CrossRef]

  • [16] Telesca, L. (2010b), Analysis of Italian seismicity by using a nonextensive approach, Tectonophysics 494, 155–162, DOI: 10.1016/j.tecto.2010.09.012. http://dx.doi.org/10.1016/j.tecto.2010.09.012 [CrossRef] [Web of Science]

  • [17] Telesca, L. (2011), Tsallis-based nonextensive analysis of the Southern California seismicity, Entropy 13,7, 1267–1280, DOI: 10.3390/e13071267. http://dx.doi.org/10.3390/e13071267 [CrossRef] [Web of Science]

  • [18] Tsallis, C. (1988), Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52,1–2, 479–487, DOI: 10.1007/BF01016429. http://dx.doi.org/10.1007/BF01016429 [CrossRef]

  • [19] Tsallis, C. (1999), Nonextensive statistics: theoretical, experimental and computational evidences and connections, Braz. J. Phys. 29,1, 1–35, DOI: 10.1590/S0103-97331999000100002. http://dx.doi.org/10.1590/S0103-97331999000100002 [CrossRef]

  • [20] Tsallis, C. (2009), Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World, Springer, New York, DOI: 10.1007/978-0-387-85359-8. [CrossRef]

  • [21] Tsallis, C., R.S. Mendes, and A.R. Plastino (1998), The role of constraints within generalized nonextensive statistics, Physica A 261,3–4, 534–554, DOI: 10.1016/S0378-4371(98)00437-3. http://dx.doi.org/10.1016/S0378-4371(98)00437-3 [CrossRef]

  • [22] Utsu, T., Y. Ogata, and R.S. Matsura (1995), The centenary of the Omori formula for a decay law of aftershock activity, J. Phys. Earth 43,1, 1–33, DOI: 10.4294/jpe1952.43.1. http://dx.doi.org/10.4294/jpe1952.43.1 [CrossRef]

  • [23] Vallianatos, F. (2009), A non-extensive approach to risk assessment, Nat. Hazards Earth Syst. Sci. 9,1, 211–216, DOI: 10.5194/nhess-9-211-2009. http://dx.doi.org/10.5194/nhess-9-211-2009 [Web of Science] [CrossRef]

  • [24] Vallianatos, F. (2011), A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field, Physica A 390,10, 1773–1778, DOI: 10.1016/j.physa.2010.12.040. http://dx.doi.org/10.1016/j.physa.2010.12.040 [Web of Science] [CrossRef]

  • [25] Vallianatos, F., and P. Sammonds (2010), Is plate tectonics a case of non-extensive thermodynamics?, Physica A 389,21, 4989–4993, DOI: 10.1016/j.physa.2010.06.056. http://dx.doi.org/10.1016/j.physa.2010.06.056 [CrossRef] [Web of Science]

  • [26] Vallianatos, F., and P. Sammonds (2011), A non-extensive statistics of the faultpopulation at the Valles Marineris extensional province, Mars, Tectonophysics 509,1–2, 50–54, DOI: 10.1016/j.tecto.2011.06.001. http://dx.doi.org/10.1016/j.tecto.2011.06.001 [Web of Science] [CrossRef]

  • [27] Vallianatos, F., E. Kokinou, and P. Sammonds (2011a), Non-extensive statistical physics approach to fault population distribution. A case study from the Southern Hellenic Arc (Central Crete), Acta Geophys. 59,4, 770–784, DOI: 10.2478/s11600-011-0015-3. http://dx.doi.org/10.2478/s11600-011-0015-3 [CrossRef] [Web of Science]

  • [28] Vallianatos, F., D. Triantis, and P. Sammonds (2011b), Non-extensivity of the isothermal depolarization relaxation currents in uniaxial compressed rocks, EPL 94,6, 68008, DOI: 10.1209/0295-5075/94/68008. http://dx.doi.org/10.1209/0295-5075/94/68008 [Web of Science] [CrossRef]

  • [29] Woessner, J., and S. Wiemer (2005), Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty, Bull. Seismol. Soc. Am. 95,2, 684–698, DOI: 10.1785/0120040007. http://dx.doi.org/10.1785/0120040007 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Alexis Cartwright-Taylor, Filippos Vallianatos, and Peter Sammonds
Physica A: Statistical Mechanics and its Applications, 2014, Volume 414, Page 368
[2]
Georgios Michas, Peter Sammonds, and Filippos Vallianatos
Pure and Applied Geophysics, 2015, Volume 172, Number 7, Page 1909
[3]
Giorgos Papadakis, Filippos Vallianatos, and Peter Sammonds
Pure and Applied Geophysics, 2015, Volume 172, Number 7, Page 1923
[4]
Chris G. Antonopoulos, George Michas, Filippos Vallianatos, and Tassos Bountis
Physica A: Statistical Mechanics and its Applications, 2014, Volume 409, Page 71
[5]
Douglas S.R. Ferreira, Andrés R.R. Papa, and Ronaldo Menezes
Physica A: Statistical Mechanics and its Applications, 2014, Volume 408, Page 170
[6]
Filippos Vallianatos and Dimos Triantis
EPL (Europhysics Letters), 2013, Volume 104, Number 6, Page 68002
[7]
Qiang Li and Gui-Ming Xu
International Journal of Geophysics, 2013, Volume 2013, Page 1
[8]
Luciano Telesca, Michele Lovallo, Gulam Babayev, and Fakhraddin Kadirov
Physica A: Statistical Mechanics and its Applications, 2013, Volume 392, Number 23, Page 6064
[9]
Vladimir Smirnov, Alexander Ponomarev, Pascal Bernard, and Seid Bourouis
Acta Geophysica, 2013, Volume 61, Number 6
[10]
F. Vallianatos, V. Karakostas, and E. Papadimitriou
Pure and Applied Geophysics, 2014, Volume 171, Number 7, Page 1343
[11]
T. Matcharashvili, L. Telesca, T. Chelidze, Z. Javakhishvili, and N. Zhukova
Tectonophysics, 2013, Volume 608, Page 857
[12]
Giorgos Papadakis, Filippos Vallianatos, and Peter Sammonds
Tectonophysics, 2013, Volume 608, Page 1037
[13]
C. Stergiopoulos, I. Stavrakas, G. Hloupis, D. Triantis, and F. Vallianatos
Engineering Failure Analysis, 2013, Volume 35, Page 454
[15]
Filippos Vallianatos
EPL (Europhysics Letters), 2013, Volume 101, Number 1, Page 10007
[16]
Filippos Vallianatos and Dimos Triantis
EPL (Europhysics Letters), 2012, Volume 99, Number 1, Page 18006

Comments (0)

Please log in or register to comment.