Jump to ContentJump to Main Navigation
Show Summary Details

Acta Geophysica

IMPACT FACTOR 2015: 0.945
5-year IMPACT FACTOR: 1.061

SCImago Journal Rank (SJR) 2015: 0.581
Source Normalized Impact per Paper (SNIP) 2015: 0.779
Impact per Publication (IPP) 2015: 0.937

Open Access
See all formats and pricing

Select Volume and Issue


Hierarchy of non-extensive mechanical processes in fracturing sea ice

1Fracture Physics Department, Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia

2Arctic and Antarctic Research Institute, St. Petersburg, Russia

© 2012 Institute of Geophysics, Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Acta Geophysica. Volume 60, Issue 3, Pages 719–739, ISSN (Online) 1895-7455, ISSN (Print) 1895-6572, DOI: https://doi.org/10.2478/s11600-012-0029-5, April 2012

Publication History

Published Online:


The fracture-induced oscillations in sea ice were detected by seismographs and seismic tiltmeters established on the Arctic ice pack. Field observations were supplemented with a laboratory experiment. The energy distributions in elastic waves generated during: (i) large-scale ice pack fragmentation over area of about 105 km2, (ii) local crack propagation in ice floe, and (iii) laboratory ice crashing were constructed and analyzed using principles of the Tsallis statistics. The energy release regimes at different stages of fracturing were characterized by the parameter of nonextensivity q. In terms of the non-extensive statistical mechanics, q > 1 evidences the correlated (non-extensive) dynamics of the process in nonequilibrium system, q = 1 responds to the additivity of events occurring in equilibrium system, and q < 1 takes place when the energy release is additive and limited by an upper cut-off. All these scenarios were revealed in fracture processes occurring at three hierarchic levels. The variation of the q-value demonstrates high thermodynamic changeability of the fracture process driven by irregular external source. The role of energy conservation in fracturing sea ice is discussed in connection with the observed reversible transitions between extensive and non-extensive modes of fracture.

Keywords: sea ice; dynamic fracture; Tsallis statistics

  • [1] Balasco, M., V. Lapenna, and L. Telesca (2002), 1/fα fluctuations in geoelectrical signals observed in a seismic area of Southern Italy, Tectonophysics 347,4, 253–268, DOI: 10.1016/S0040-1951(02)00062-8. http://dx.doi.org/10.1016/S0040-1951(02)00062-8 [Crossref]

  • [2] Bowman, D.D., G. Ouillon, C.G. Sammis, A. Sornette, and D. Sornette (1998), An observational test of the critical earthquake concept, J. Geophys. Res. 103,B10, 24359–24372, DOI: 10.1029/98JB00792. http://dx.doi.org/10.1029/98JB00792 [Crossref]

  • [3] Chmel, A., and V.N. Smirnov (2008), Self-organized dynamics of the sea ice cover. In: K.B. Tewles (ed.), The Pacific and Arctic Oceans — New Oceanographic Researches, Nova Science, New York, 131–156.

  • [4] Chmel, A., and V.N. Smirnov (2011), Correlated energy exchange in drifting sea ice, Int. J. Oceanography, DOI: 10.1155/2011/316289. [Crossref]

  • [5] Chmel, A., V.N. Smirnov, and L.V. Panov (2007), Scaling aspects of the sea-icedrift dynamics and pack fracture, Ocean Sci. 3,2, 291–298, DOI: 10.5194/os-3-291-2007. http://dx.doi.org/10.5194/os-3-291-2007 [Crossref] [Web of Science]

  • [6] Chmel, A., V. Smirnov, and O. Golovanov (2010a), Variability of scaling para meters in non-conservative systems: Geophysical aspect, Physica A, 389,13, 2617–2627, DOI: 10.1016/j.physa.2010.02.055. http://dx.doi.org/10.1016/j.physa.2010.02.055 [Crossref] [Web of Science]

  • [7] Chmel, A., V.N. Smirnov, and I.B. Sheikin (2010b), Variability of scaling time series in the Arctic sea-ice drift dynamics, Ocean Sci. 6,1, 211–217, DOI: 10.5194/os-6-211-2010. http://dx.doi.org/10.5194/os-6-211-2010 [Web of Science] [Crossref]

  • [8] Contoyiannis, Y.F., C. Nomicos, J. Kopanas, G. Antonopoulos, L. Contoyianni, and K. Eftaxias (2010), Critical features in electromagnetic anomalies detected prior to the L’Aquila earthquake, Physica A 389,3, 499–508, DOI: 10.1016/j.physa.2009.09.046. http://dx.doi.org/10.1016/j.physa.2009.09.046 [Crossref] [Web of Science]

  • [9] Ferri, G.L., M.F. Reynoso Savio, and A. Plastino (2010), Tsallis’ q-triplet and the ozone layer, Physica A 389,9, 1829–1833, DOI: 10.1016/j.physa.2009.12.020. http://dx.doi.org/10.1016/j.physa.2009.12.020 [Web of Science] [Crossref]

  • [10] Genshaft, Yu.S. (2009), The Earth as an open system: Geological and geophysical consequences, Izv. — Phys. Solid Earth 45,8, 624–632, DOI: 10.1134/S1069351309080023. http://dx.doi.org/10.1134/S1069351309080023 [Web of Science] [Crossref]

  • [11] Kalimeri, M., C. Papadimitriou, G. Balasis, and K. Eftaxias (2008), Dynamical complexity detection in pre-seismic emissions using nonadditive Tsallis entropy, Physica A 387,5–6, 1161–1172, DOI: 10.1016/j.physa.2007. 10.053. http://dx.doi.org/10.1016/j.physa.2007.10.053 [Crossref] [Web of Science]

  • [12] Kapiris, P.G., K.A. Eftaxias, K.D. Nomikos, J. Polygiannakis, E. Dologlou, G.T. Balasis, N.G. Bogris, A.S. Peratzakis, and V.E. Hadjicontis (2003), Evolving towards a critical point: A possible electromagnetic way in which the critical regime is reached as the rupture approaches, Nonlin. Processes Geophys. 10,6, 511–524, DOI: 10.5194/npg-10-511-2003. http://dx.doi.org/10.5194/npg-10-511-2003 [Crossref]

  • [13] Keylock, C.J. (2005), Describing the recurrence interval of extreme floods using nonextensive thermodynamics and Tsallis statistics, Adv. Water Resour. 28,8, 773–778, DOI: 10.1016/j.advwatres.2005.02.011. http://dx.doi.org/10.1016/j.advwatres.2005.02.011 [Crossref]

  • [14] Martin, S., and R. Drucker (1991), Observations of short-period ice floe accelerations during leg II of the Polarbjørn drift, J. Geophys. Res. 96,C6, 10567–10580, DOI: 10.1029/91JC00785. http://dx.doi.org/10.1029/91JC00785 [Crossref]

  • [15] McNutt, S.L., and J.E. Overland (2003), Spatial hierarchy in Arctic sea ice dynamics, Tellus A 55,2, 181–191, DOI: 10.1034/j.1600-0870.2003. 00012.x. http://dx.doi.org/10.1034/j.1600-0870.2003.00012.x [Crossref]

  • [16] Milovanov, A.V., and L.M. Zelenyi (2000), Functional background of the Tsallis entropy: “coarse-grained” systems and “kappa” distribution functions, Nonlin. Processes Geophys. 7,3/4, 211–221, DOI: 10.5194/npg-7-211-2000. http://dx.doi.org/10.5194/npg-7-211-2000 [Crossref]

  • [17] Overland, J.E., B.A. Walter, T.B. Curtin, and P. Turet (1995) Hierarchy and sea ice mechanics: A case study from the Beaufort Sea, J. Geophys. Res. 100,C3, 4559–4571, DOI: 10.1029/94JC02502. http://dx.doi.org/10.1029/94JC02502 [Crossref]

  • [18] Rabinovitch, A., V. Frid, and D. Bahat (2001), Gutenberg-Richter-type relation for laboratory fracture-induced electromagnetic radiation, Phys. Rev. E 65,1, 011401, DOI:10.1103/PhysRevE.65.011401. http://dx.doi.org/10.1103/PhysRevE.65.011401 [Crossref]

  • [19] Shcherbakov, I.P., V.S. Kuksenko, and A.E. Chmel (2011), Nonextensive statistical analysis of the data on the high-speed impact fracture of solids, JEPT Lett. 94,5, 378–381, DOI: 10.1134/S0021364011170152. [Crossref]

  • [20] Shi, B., B. Vidakovic, G.G. Katul, and J.D. Albertson (2005), Assessing the effects of atmospheric stability on the fine structure of surface layer turbulence using local and global multiscale approaches, Phys. Fluids 17,5, 055104, DOI: 10.1063/1.1897008. http://dx.doi.org/10.1063/1.1897008 [Crossref]

  • [21] Silva, R., G.S. França, C.S. Vilar, and J.S. Alcaniz (2006), Nonextensive models for earthquakes, Phys. Rev. E 73,2, 026102, DOI: 10.1103/PhysRevE.73.026102. http://dx.doi.org/10.1103/PhysRevE.73.026102 [Crossref]

  • [22] Smirnov, V.N. (1996), Dynamic Processes in Sea Ice, Gidrometeoizdat, St. Petersburg (in Russian).

  • [23] Sotolongo-Costa, O., and A. Posadas (2004), Fragment-asperity interaction model for earthquakes, Phys. Rev. Lett. 92,4, 048501, DOI: 10.1103/PhysRevLett.92.048501. http://dx.doi.org/10.1103/PhysRevLett.92.048501 [Crossref]

  • [24] Sotolongo-Costa, O., A.H. Rodrigez, and G.J. Rodgers (2000), Tsallis entropy and the transition to scaling in fragmentation, Entropy 2,4, 172–177, DOI: 10.3390/e2040172. http://dx.doi.org/10.3390/e2040172 [Crossref]

  • [25] Telesca, L. (2010a), Nonextensive analysis of seismic sequences, Physica A 389,9, 1911–1914, DOI: 10.1016/j.physa.2010.01.012. http://dx.doi.org/10.1016/j.physa.2010.01.012 [Crossref] [Web of Science]

  • [26] Telesca, L. (2010b), A non-extensive approach in investigating the seismity of L’Aquila area (central Italy), struck by the 6 April 2009 earthquake, Terra Nova, 22,2, 87–93, DOI: 10.1111/j.1365-3121.2009.00920.x. http://dx.doi.org/10.1111/j.1365-3121.2009.00920.x [Web of Science] [Crossref]

  • [27] Telesca, L. (2010c), Analysis of Italian seismicity by using a nonextensive approach, Tectonophysics 494,1–2, 155–162, DOI: 10.1016/j.tecto.2010. 09.012. http://dx.doi.org/10.1016/j.tecto.2010.09.012 [Crossref] [Web of Science]

  • [28] Telesca, L., and C.-C. Chen (2010), Nonextensive analysis of crustal seismicity in Taiwan, Nat. Hazards Earth Syst. Sci. 10, 1293–1297, DOI: 10.5194/nhess-10-1293-2010. http://dx.doi.org/10.5194/nhess-10-1293-2010 [Crossref] [Web of Science]

  • [29] Tsallis, C. (1988), Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52,1–2, 479–487, DOI: 10.1007/BF01016429. http://dx.doi.org/10.1007/BF01016429 [Crossref]

  • [30] Tsallis, C. (2009), Introduction to Nonextensive Statistical Mechanics. Approaching a Complex World, Springer, New York, 382 pp.

  • [31] Tsallis, C. (2011), The nonadditive entropy Sq and its applications in physics and elsewhere: Some remarks, Entropy 13,10, 1765–1804, DOI: 10.3390/e13101765. http://dx.doi.org/10.3390/e13101765 [Web of Science] [Crossref]

  • [32] Vallianatos, F. (2009), A non-extensive approach to risk assessment, Nat. Hazards Earth Syst. Sci. 9,1, 211–216, DOI: 10.5194/nhess-9-211-2009. http://dx.doi.org/10.5194/nhess-9-211-2009 [Web of Science] [Crossref]

  • [33] Vallianatos, F., and P. Sammonds (2010), Is plate tectonics a case of non-extensive thermodynamics? Physica A 389,21, 4989–4993, DOI: 10.1016/j.physa.2010.06.056. http://dx.doi.org/10.1016/j.physa.2010.06.056 [Crossref] [Web of Science]

  • [34] Vallianatos, F., and P. Sammonds (2011), Non-extensive thermodynamics applied to global seismicity before and after the Sumatran mega-earthquake, Geophys. Res. Abstr. 13, EGU2011–10723.

  • [35] Vallianatos, F., and D. Triantis (2008), Scaling in pressure stimulated currents related with rock fracture, Physica A 387,19–20, 4940–4946, DOI: 10.1016/j.physa.2008.03.028. http://dx.doi.org/10.1016/j.physa.2008.03.028 [Web of Science] [Crossref]

  • [36] Vallianatos, F., D. Triantis, and P. Sammonds (2011), Non-extensivity of the isothermal depolarization relaxation currents in uniaxial compressed rocks, Europhys. Lett. 94,6, 68008, DOI: 10.1209/0295-5075/94/68008. http://dx.doi.org/10.1209/0295-5075/94/68008 [Web of Science] [Crossref]

  • [37] Varotsos, P.A., N.V. Sarlis, E.S. Scordas, H.K. Tanaka, and M.S. Lazaridou (2006), Attempt to distinguish long-range temporal correlations from the statistics of the increments by natural time analysis, Phys. Rev. E 74,2, 021123, DOI: 10.1103/PhysRevE.74.021123. http://dx.doi.org/10.1103/PhysRevE.74.021123 [Crossref]

  • [38] Vettegren’, V.I., V.S. Kuksenko, and I.P. Shcherbakov (2011), Emission kinetics of light, sound, and radio waves from single-crystalline quartz after impact on its surface, Tech. Phys. 56,4, 577–580, DOI: 10.1134/S1063784211040311. http://dx.doi.org/10.1134/S1063784211040311 [Crossref] [Web of Science]

  • [39] Weiss, J. (2003), Scaling of fracture and faulting of ice on Earth, Surv. Geophys. 24,2, 185–227, DOI: 10.1023/A:1023293117309. http://dx.doi.org/10.1023/A:1023293117309 [Crossref]

  • [40] Weiss, J., and D. Marsan (2004) Scale properties of sea ice deformation and fracturing, C. R. Phys. 5,7, 735–751, DOI: 10.1016/j.crhy.2004.09.005. http://dx.doi.org/10.1016/j.crhy.2004.09.005 [Crossref]

  • [41] Weiss, J., J.-R. Grasso, M.-C. Miguel, A. Vespignani, and S. Zapperi (2001), Complexity in dislocation dynamics: experiments, Mater. Sci. Eng. A 309–310, 360–364, DOI: 10.1016/S0921-5093(00)01633-6. [Crossref]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alexandre Chmel and Victor Smirnov
ISRN Oceanography, 2013, Volume 2013, Page 1

Comments (0)

Please log in or register to comment.