Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Acta Geophysica

6 Issues per year

IMPACT FACTOR 2016: 0.968
5-year IMPACT FACTOR: 1.270

Cite Score 2016: 1.06

SCImago Journal Rank (SJR) 2015: 0.581
Source Normalized Impact per Paper (SNIP) 2015: 0.779

Open Access
See all formats and pricing
In This Section
Volume 60, Issue 4 (Aug 2012)


Results of the application of tropospheric corrections from different troposphere models for precise GPS rapid static positioning

Paweł Wielgosz
  • University of Warmia and Mazury, Olsztyn, Poland
  • Email:
/ Jacek Paziewski
  • University of Warmia and Mazury, Olsztyn, Poland
  • Email:
/ Andrzej Krankowski
  • University of Warmia and Mazury, Olsztyn, Poland
  • Email:
/ Krzysztof Kroszczyński
  • Military University of Technology, Warszawa, Poland
  • Email:
/ Mariusz Figurski
  • Military University of Technology, Warszawa, Poland
  • Email:
Published Online: 2012-06-08 | DOI: https://doi.org/10.2478/s11600-011-0078-1


In many surveying applications, determination of accurate heights is of significant interest. The delay caused by the neutral atmosphere is one of the main factors limiting the accuracy of GPS positioning and affecting mainly the height coordinate component rather than horizontal ones. Estimation of the zenith total delay is a commonly used technique for accounting for the tropospheric delay in static positioning. However, in the rapid static positioning mode the estimation of the zenith total delay may fail, since for its reliable estimation longer observing sessions are required. In this paper, several troposphere modeling techniques were applied and tested with three processing scenarios: a single baseline solution with various height differences and a multi-baseline solution. In specific, we introduced external zenith total delays obtained from Modified Hopfield troposphere model with standard atmosphere parameters, UNB3m model, COAMPS numerical weather prediction model and zenith total delays interpolated from a reference network solution. The best results were obtained when tropospheric delays derived from the reference network were applied.

Keywords: GPS; rapid static positioning; tropospheric delay; zenith total delay

  • [1] Bevis, M., S.T. Businger, and T.H.A. Herring, C. Rocken, R.A. Anthes, R.H. Ware (1992), GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res. 97,D14, 15787–15801, DOI: 10.1029/92JD01517. http://dx.doi.org/10.1029/92JD01517 [Crossref]

  • [2] Black, H.D., and A. Eisner (1984), Correcting satellite doppler data for tropospheric effects, J. Geophys. Res. 89,D2, 2616–2626, DOI: 10.1029/JD089iD02p02616. http://dx.doi.org/10.1029/JD089iD02p02616 [Crossref]

  • [3] Bock, O., and E. Doerflinger (2000), Atmospheric processing methods for high accuracy positioning with the Global Positioning System. In: Proc. COST Action 716 Workshop, 10–12 July 2000, Soria Moria, Oslo, Norway.

  • [4] Boehm, J., B. Werl, and H. Schuh (2006), Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J. Geophys. Res. 111, B02406, DOI: 10.1029/2005JB003629. http://dx.doi.org/10.1029/2005JB003629 [Crossref]

  • [5] Boehm, J., R. Heinkelmann, and H. Schuh (2007), Short note: A global model of pressure and temperature for geodetic applications, J. Geod. 81,10, 679–683, DOI: 10.1007/s00190-007-0135-3. http://dx.doi.org/10.1007/s00190-007-0135-3 [Crossref]

  • [6] Bosy, J., W. Graszka, and M. Leonczyk (2007), ASG-EUPOS — a multifunctional precise satellite positioning system in Poland, Trans. Nav. 1,4, 371–374.

  • [7] Chao, C.C. (1972), A Model for Tropospheric Calibration from Daily Surface and Radiosonde Balloon Measurements. In: Technical Memorandum, Jet Propulsion Laboratory, Pasadena, California, USA, 391–350.

  • [8] Davis, J.L., T.H.A Herring, I.I. Shapiro, A.E.E. Rogers, and G. Elgered (1985), Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Sci. 20,6, 1593–1607, DOI: 10.1029/RS020i006p01593. http://dx.doi.org/10.1029/RS020i006p01593 [Crossref]

  • [9] Figurski, M., M. GaŁuszkiewicz, P. Kamiński, and K. Kroszczyński (2009), Mesoscale anisotropy of GPS slant delay, Bull. Geod. Geomatics 2, 99–110.

  • [10] Foelsche, U., and G. Kirchengast (2002), A simple “geometric” mapping function for the hydrostatic delay at radio frequencies and assessment of its performance, Geophys. Res. Lett. 29,1473, 1111–1114, DOI: 10.1029/2001GL013744.i., 6, 3 [Crossref]

  • [11] Goad, C.C., and L. Goodman (1974), A modified Hopfield tropospheric refraction correction model. In: American Geophysical Union Annual Fall Meeting, 12–17 December 1974, San Francisco, California, USA (abstract EOS Trans. AGU 55, 1106).

  • [12] Guo, J., and R.B. Langley (2003), A new tropospheric propagation delay mapping function for elevation angles down to 2°. In: Proc. 16th Int. Tech. Meeting of the Satellite Division of The Institute of Navigation, 9–12 September 2003, Portland, OR, USA, 386–396.

  • [13] Gutman, S.I., and S.G. Benjamin (2001), The role of ground-based GPS meteorological observations in numerical weather prediction, GPS Solutions 4,4, 16–24, DOI: 10.1007/PL00012860. http://dx.doi.org/10.1007/PL00012860 [Crossref]

  • [14] Hobiger, T., R. Ichikawa, Y. Koyama, and T. Kondo (2008a), Fast and accurate raytracing algorithms for real-time space geodetic applications using numerical weather models, J. Geophys. Res. 113, D20302, DOI: 10.1029/2008JD010503. http://dx.doi.org/10.1029/2008JD010503 [Web of Science] [Crossref]

  • [15] Hobiger, T., R. Ichikawa, T. Takasu, Y. Koyama, and T. Kondo (2008b), Ray-traced troposphere slant delays for precise point positioning, Earth Planets Space 60,5, e1–e4. [Crossref] [Web of Science]

  • [16] Hobiger, T., S. Shimada, S. Shimizu, R. Ichikawa, Y. Koyama, and T. Kondo (2010), Improving GPS positioning estimates during extreme weather situations by the help of fine-mesh numerical weather models, J. Atmos. Solar-Terrestr. Phys. 72,2–3, 262–270, DOI: 10.1016/j.jastp.2009.11.018. http://dx.doi.org/10.1016/j.jastp.2009.11.018 [Crossref] [Web of Science]

  • [17] Hodur, R.M., X. Hong, J.D. Doyle, J. Pullen, J. Cummings, P. Martin, and M.A. Rennick (2002), The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS), Oceanography 15,1, 88–98. http://dx.doi.org/10.5670/oceanog.2002.39

  • [18] Hopfield, H.S. (1971), Tropospheric effect on electromagnetically measured range: prediction from surface weather data, Radio Sci. 6,3, 357–367, DOI: 10.1029/RS006i003p00357. http://dx.doi.org/10.1029/RS006i003p00357 [Crossref]

  • [19] Jonge, de, P.J., and C. Tiberius (1996), The LAMBDA method for integer ambiguity estimation: implementation aspects, LGR Publs. 12, 1–49.

  • [20] Leandro, R., M.C. Santos, and R.B. Langley (2006), UNB neutral atmosphere models: development and performance. In: Proc. Inst. Navigation, National Technical Meeting, 18–20 January 2006, Monterrey, CA, USA.

  • [21] Leandro, R.F., R.B. Langley, and M.C. Santos (2008), UNB3m_pack: a neutral atmosphere delay package for radiometric space techniques, GPS Solutions 12,1, 65–70, DOI: 10.1007/s10291-007-0077-5. http://dx.doi.org/10.1007/s10291-007-0077-5 [Crossref] [Web of Science]

  • [22] Leick, A. (2004), GPS Satellite Surveying, John Wiley & Sons, New Jersey, 474 pp.

  • [23] Mendes, V.B. (1999), Modeling the neutral-atmosphere propagation delay in radiometric space techniques, Ph.D. Thesis, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada, Technical Report No. 199.

  • [24] Niell, A.E. (1996), Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophys. Res. 101,B2, 3227–3246, DOI: 10.1029/95JB03048. http://dx.doi.org/10.1029/95JB03048 [Crossref]

  • [25] Ramjee, P., and M. Ruggieri (2005), Applied Satellite Navigation Using GPS, GALILEO and Augmentation Systems, Artech House, Boston, Artech House mobile communications series.

  • [26] Rothacher, M. (2002), Estimation of station heights with GPS. In: H. Drewes, A. Dodson, L.P.S. Fortes, L. Sánchez, and P. Sandoval (eds.), Vertical Reference Systems, Springer, Berlin, 81–90.

  • [27] Saastamoinen, J. (1972), Atmospheric Correction for the troposphere and stratosphere in radio ranging of satellites, In: S. Henriksen, The Use of Artificial Satellites for Geodesy, Geophys. Monogr. Ser. 15, 247–251, AGU, Washington, D.C. http://dx.doi.org/10.1029/GM015p0247

  • [28] Saha, K., C.S. Raju, and K. Parameswaran (2010), A new hydrostatic mapping function for tropospheric delay estimation, J. Atmos. Solar-Terrestr. Phys. 72,1, 125–134, DOI: 10.1016/j.jastp.2009.10.017. http://dx.doi.org/10.1016/j.jastp.2009.10.017 [Web of Science] [Crossref]

  • [29] Schaer, S. (1999), Mapping and predicting the Earth’s ionosphere using the Global Positioning System, Ph.D. Thesis, Astronomical Institute, University of Bern, Bern, Switzerland, 205 pp.

  • [30] Steigenberger, P., J. Boehm, and V. Tesmer (2009), Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading, J. Geod. 83,10, 943–951, DOI: 10.1007/s00190-009-0311-8. http://dx.doi.org/10.1007/s00190-009-0311-8 [Crossref]

  • [31] Teunissen, P.J.G. (1995), The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation, J. Geod. 70,1–2, 65–82, DOI: 10.1007/BF00863419. http://dx.doi.org/10.1007/BF00863419 [Crossref]

  • [32] Vey, S., R. Dietrich, M. Fritsche, A. Rülke, M. Rothacher, and P. Steigenberger (2006), Influence of mapping function parameters on global GPS network analyses: Comparisons between NMF and IMF, Geophys. Res. Lett. 33, L01814, DOI: 10.1029/2005GL024361. http://dx.doi.org/10.1029/2005GL024361 [Crossref]

  • [33] Wielgosz, P. (2011), Quality assessment of GPS rapid static positioning with weighted ionospheric parameters in generalized least squares, GPS Solutions 15,2, 89–99, DOI: 10.1007/s10291-010-0168-6. http://dx.doi.org/10.1007/s10291-010-0168-6 [Crossref] [Web of Science]

About the article

Published Online: 2012-06-08

Published in Print: 2012-08-01

Citation Information: Acta Geophysica, ISSN (Online) 1895-7455, ISSN (Print) 1895-6572, DOI: https://doi.org/10.2478/s11600-011-0078-1. Export Citation

© 2011 Institute of Geophysics, Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Krzysztof Kroszczyński
Acta Geophysica, 2015, Volume 63, Number 4
P Wielgosz, M Krukowska, J Paziewski, A Krypiak-Gregorczyk, K Stepniak, J Kaplon, J Sierny, T Hadas, and J Bosy
Measurement Science and Technology, 2013, Volume 24, Number 12, Page 125802

Comments (0)

Please log in or register to comment.
Log in