Jump to ContentJump to Main Navigation
Show Summary Details

Acta Geophysica

6 Issues per year

IMPACT FACTOR 2015: 0.945
5-year IMPACT FACTOR: 1.061

SCImago Journal Rank (SJR) 2015: 0.581
Source Normalized Impact per Paper (SNIP) 2015: 0.779
Impact per Publication (IPP) 2015: 0.937

Open Access
See all formats and pricing
Volume 61, Issue 3 (Jun 2013)


Boundary conditions effect on linearized mud-flow shallow model

Cristiana Cristo
  • Dipartimento di Ingegneria Civile e Meccanica, Università degli Studi di Cassino e del Lazio Meridionale, Cassino, Italy
  • Email:
/ Michele Iervolino
  • Dipartimento di Ingegneria Civile, Design, Edilizia e Ambiente, Seconda Università di Napoli, Aversa, Italy
  • Email:
/ Andrea Vacca
  • Dipartimento di Ingegneria Civile, Design, Edilizia e Ambiente, Seconda Università di Napoli, Aversa, Italy
  • Email:
Published Online: 2013-03-16 | DOI: https://doi.org/10.2478/s11600-013-0108-2


The occurrence of roll-waves in mud-flows is investigated based on the formulation of the marginal stability threshold of a linearized onedimensional viscoplastic (shear-thinning) flow model. Since for this kind of non-Newtonian rheological models this threshold may occur in a hypocritical flow, the downstream boundary condition may have a nonnegligible effect on the spatial growth/decay of the perturbation. The paper presents the solution of the 1D linearized flow of a Herschel and Bulkley fluid in a channel of finite length, in the neighbourhood of a hypocritical base uniform flow. Both linearly stable and unstable conditions are considered. The analytical solution is found applying the Laplace transform method and obtaining the first-order analytical expressions of the upstream and downstream channel response functions in the time domain. The effects of both the yield stress and the rheological law exponent are discussed, recovering as particular cases both power-law and Bingham fluids. The theoretical achievements may be used to extend semi-empirical criteria commonly employed for predicting roll waves occurrence in clear water even to mud-flows.

Keywords: boundary conditions; Herschel and Bulkley fluid; linear stability; roll-waves; shallow flow model

  • [1] Ancey, C., N. Andreini, and G. Epely-Chauvin (2012), Viscoplastic dambreak waves: Review of simple computational approaches and comparison with experiments, Adv. Water Resour. 48, 79–91, DOI: 10.1016/j.advwatres.2012.03.015. http://dx.doi.org/10.1016/j.advwatres.2012.03.015 [Crossref]

  • [2] Anderson, K., S. Sundaresan, and R. Jackson (1995), Instabilities and the formation of bubbles in fluidized beds, J. Fluid Mech. 303, 327–366, DOI: 10.1017/ S0022112095004290. http://dx.doi.org/10.1017/S0022112095004290 [Crossref]

  • [3] Anderson, T.B., and R. Jackson (1967), Fluid mechanical description of fluidized beds: equations of motion, Ind. Eng. Chem. Fundamen. 6,4, 527–539, DOI: 10.1021/i160024a007. http://dx.doi.org/10.1021/i160024a007 [Crossref]

  • [4] Balmforth, N.J., and J.J. Liu (2004), Roll waves in mud, J. Fluid Mech. 519, 33–54, DOI: 10.1017/s0022112004000801. http://dx.doi.org/10.1017/S0022112004000801 [Crossref]

  • [5] Berlamont, J.F. (1976), Roll-waves in inclined rectangular open channels. In: Proc. Int. Symp. “Unsteady Flow in Open Channels”, BHRA Fluid Engineering, Newcastle, A2, 13–26.

  • [6] Berlamont, J.F., and N. Vanderstappen (1981), Unstable turbulent flow in open channels, J. Hydraul. Div. 107,4, 427–449.

  • [7] Bialik, R.J., V.I. Nikora, and P.M. Rowiński (2012), 3D Lagrangian modelling of saltating particles diffusion in turbulent water flow, Acta Geophys. 60,6, 1639–1660, DOI: 10.2478/s11600-012-0003-2. http://dx.doi.org/10.2478/s11600-012-0003-2 [Crossref]

  • [8] Bird, R.B., G.C. Dai, and B.J. Yarusso (1983), The rheology and flow of viscoplastic materials, Rev. Chem. Eng. 1, 1–70.

  • [9] Bose, S.K., and S. Dey (2013), Turbulent unsteady flow profiles over an adverse slope, Acta Geophys. 61,1, 84–97, DOI: 10.2478/s11600-012-0080-2. http://dx.doi.org/10.2478/s11600-012-0080-2 [Crossref]

  • [10] Brock, R.R. (1969), Development of roll-wave trains in open channels, J. Hydraul. Div. 95,4, 1401–1427.

  • [11] Coussot, P. (1994), Steady, laminar, flow of concentrated mud suspensions in open channel, J. Hydraul. Res. 32,2, 535–559, DOI: 10.1080/00221686.1994.9640151. [Crossref]

  • [12] Di Cristo, C., and A. Vacca (2005), On the convective nature of roll waves instability, J. Appl. Math. 2005,3, 259–271, DOI: 10.1155/JAM.2005.259. http://dx.doi.org/10.1155/JAM.2005.259 [Crossref]

  • [13] Di Cristo, C., M. Iervolino, A. Vacca, and B. Zanuttigh (2008), Minimum channel length for roll-wave generation, J. Hydraul. Res. 46,1, 73–79, DOI: 10.1080/00221686.2008.9521844. http://dx.doi.org/10.1080/00221686.2008.9521844 [Crossref]

  • [14] Di Cristo, C., M. Iervolino, A. Vacca, and B. Zanuttigh (2009), Roll-waves prediction in dense granular flows, J. Hydrol. 377,1–2, 50–58, DOI: 10.1016/ j.jhydrol.2009.08.008. http://dx.doi.org/10.1016/j.jhydrol.2009.08.008 [Crossref]

  • [15] Di Cristo, C., M. Iervolino, A. Vacca, and B. Zanuttigh (2010), Influence of relative roughness and Reynolds number on the roll-waves spatial evolution, J. Hydraul. Eng. ASCE 136,1, 24–33, DOI: 10.1061/ (ASCE)HY.1943-7900.0000139. http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000139 [Crossref]

  • [16] Di Cristo, C., M. Iervolino, and A. Vacca (2012a), Discussion of “Analysis of dynamic wave model for unsteady flow in an open channel” by Maurizio Venutelli, J. Hydraul. Eng. ASCE 138,10, 915–917, DOI: 10.1061/ (ASCE) HY.1943-7900.0000538. http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000538 [Crossref]

  • [17] Di Cristo, C., M. Iervolino, and A. Vacca (2012b), Green’s function of the linearized Saint-Venant equations in laminar and turbulent flows, Acta Geophys. 60,1, 173–190, DOI: 10.2478/s11600-011-0039-8. http://dx.doi.org/10.2478/s11600-011-0039-8 [Crossref]

  • [18] Di Cristo, C., M. Iervolino, and A. Vacca (2013a), Waves dynamics in a linearized mud-flow shallow model, Appl. Math. Sci. 7,8, 377–393.

  • [19] Di Cristo, C., M. Iervolino, and A. Vacca (2013b), Gravity-driven flow of a shearthinning power-law fluid over a permeable plane, Appl. Math. Sci. 7,33, 1623–1641.

  • [20] Di Nucci, C., and A. Russo Spena (2011), Discussion of “Energy and momentum under critical flow conditions” by O. Castro-Orgaz, J.V. Giráldez and J.L. Ayuso, J. Hydraul. Res. 49,1, 127–130, DOI: 10.1080/00221686.2010. 538573. http://dx.doi.org/10.1080/00221686.2010.538573 [Crossref]

  • [21] Di Nucci, C., A. Russo Spena, and M.T. Todisco (2007), On the non-linear unsteady water flow in open channels, Il Nuovo Cimento B 122,3, 237–255, DOI: 10.1393/ncb/i2006-10174-x. [Crossref]

  • [22] Dooge, J.C.I., and J.J. Napiórkowski (1984), Effect of downstream control in diffusion routing, Acta Geophys. Pol. 32,4, 363–373.

  • [23] Dooge, J.C.I., J.J. Napiórkowski, and G. Strupczewski (1987), The linear downstream response of a generalized uniform channel, Acta Geophys. Pol. 35,3, 277–291.

  • [24] Drew, D.A. (1983), Mathematical modeling of two-phase flow, Ann. Rev. Fluid Mech. 15, 261–291, DOI: 10.1146/annurev.fl.15.010183.001401. http://dx.doi.org/10.1146/annurev.fl.15.010183.001401 [Crossref]

  • [25] Dyke, P.P.G. (1999), An Introduction to Laplace Transforms and Fourier Series, Springer Undergraduate Mathematics Series, Springer, London, 248 pp.

  • [26] Gradshteyn, I.S., and I.M. Ryzhik (1963), Table of Integrals, Series, and Products, 5th ed., Academic Press, London.

  • [27] Greco, M., M. Iervolino, A. Leopardi, and A. Vacca (2012), A two-phase model for fast geomorphic shallow flows, Int. J. Sediment Res. 27,4, 409–425, DOI: 10.1016/S1001-6279 (13)60001-3. http://dx.doi.org/10.1016/S1001-6279(13)60001-3 [Crossref]

  • [28] Huang, X., and M.H. García (1997), A perturbation solution for Bingham-plastic mudflows, J. Hydraul. Eng. ASCE 123,11, 986–994, DOI: 10.1061/(ASCE) 0733-9429(1997)123:11(986). http://dx.doi.org/10.1061/(ASCE)0733-9429(1997)123:11(986) [Crossref]

  • [29] Huang, X., and M.H. García (1998), A Herschel-Bulkley model for mud flow down a slope, J. Fluid Mech. 374, 305–333, DOI: 10.1017/S0022112098002845. http://dx.doi.org/10.1017/S0022112098002845 [Crossref]

  • [30] Hwang, C.-C., J.-L. Chen, J.-S. Wang, and J.-S. Lin (1994), Linear stability of power law liquid film flows down an inclined plane, J. Phys. D: Appl. Phys. 27,11, 2297–2301, DOI: 10.1088/0022-3727/27/11/008. http://dx.doi.org/10.1088/0022-3727/27/11/008 [Crossref]

  • [31] Iverson, R.M. (1997), The physics of debris flows, Rev. Geophys. 35, 3, 245–296, DOI: 10.1029/97RG00426. http://dx.doi.org/10.1029/97RG00426 [Crossref]

  • [32] Jackson, R. (2000), The Dynamics of Fluidized Particles, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge.

  • [33] Johnson, A.M. (1970), Physical Processes in Geology, Freeman, Cooper and Co., San Francisco, 577 pp.

  • [34] Liggett, J.A. (1975), Basic equations of unsteady flow. In: K. Mahmood and V. Yevjevich (eds.), Unsteady Flow in Open Channels, Vol. 1, Water Resources Publications, Fort Collins, 29–62.

  • [35] Liu, K.F., and C.C. Mei (1989), Slow spreading of a sheet of Bingham fluid on an inclined plane, J. Fluid Mech. 207, 505–529, DOI: 10.1017/ S0022112089002685. http://dx.doi.org/10.1017/S0022112089002685 [Crossref]

  • [36] Montuori, C. (1963), Discussion of “Stability aspect of flow in open channels” by F.F. Escoffier and M.B. Boyd, J. Hydraul. Div. 89,4, 264–273.

  • [37] Moreno, P.A., and F.A. Bombardelli (2012), 3D numerical simulation of particleparticle collisions in saltation mode near stream beds, Acta Geophys. 60,6, 1661–1688, DOI: 10.2478/s11600-012-0077-x. http://dx.doi.org/10.2478/s11600-012-0077-x [Crossref]

  • [38] Napiórkowski, J.J., and J.C.I. Dooge (1988), Analytical solution of channel flow model with downstream control, Hydrol. Sci. J. 33,3, 269–287, DOI: 10.1080/02626668809491248. http://dx.doi.org/10.1080/02626668809491248 [Crossref]

  • [39] Ng, C.-O., and C.C. Mei (1994), Roll waves on a shallow layer of mud modelled as a power-law fluid, J. Fluid Mech. 263, 151–184, DOI: 10.1017/ S0022112094004064. http://dx.doi.org/10.1017/S0022112094004064 [Crossref]

  • [40] O’Brien, J.S., and P.Y. Julien (1988), Laboratory analysis of mudflow properties, J. Hydraul. Eng. ASCE 114,8, 877–887, DOI: 10.1061/(ASCE)0733-9429 (1988)114:8(877). http://dx.doi.org/10.1061/(ASCE)0733-9429(1988)114:8(877) [Crossref]

  • [41] Pascal, J.P. (2006), Instability of power-law fluid flow down a porous incline, J. Non-Newton. Fluid Mech. 133,2–3, 109–120, DOI: 10.1016/j.jnnfm.2005.11.007. http://dx.doi.org/10.1016/j.jnnfm.2005.11.007 [Crossref]

  • [42] Pascal, J.P., and S.J.D. D’Alessio (2007), Instability of power-law fluid flows down an incline subjected to wind stress, Appl. Math. Model. 31,7, 1229–1248, DOI: 10.1016/j.apm.2006.04.002. http://dx.doi.org/10.1016/j.apm.2006.04.002 [Crossref]

  • [43] Pitman, E.B., and L. Le (2005), A two-fluid model for avalanche and debris flows, Phil. Trans. Roy. Soc. A 363,1832, 1573–1601, DOI: 10.1098/rsta.2005.1596. http://dx.doi.org/10.1098/rsta.2005.1596 [Crossref]

  • [44] Ponce, V.M., and D.B. Simons (1977), Shallow wave propagation in open channel flow, J. Hydraul. Div. 103,12, 1461–1476.

  • [45] Ridolfi, L., A. Porporato, and R. Revelli (2006), Green’s function of the linearized de Saint-Venant equations, J. Eng. Mech. 132,2, 125–132, DOI: 10.1061/ (ASCE)0733-9399(2006)132:2(125). http://dx.doi.org/10.1061/(ASCE)0733-9399(2006)132:2(125) [Crossref]

  • [46] Stoker, J.J. (1957), Water Waves, Interscience, New York.

  • [47] Supino, G. (1960), Sopra le onde di traslazione nei canali, Rendiconti Lincei 29,5–6, 543–552 (in Italian).

  • [48] Takahashi, T. (1991), Debris Flow, IAHR/AIRH Monograph, Balkema, Rotterdam.

  • [49] Trèves, F. (1966), Linear Partial Differential Equations with Constant Coefficients, Gordon and Breach Science Publishers, New York.

  • [50] Trowbridge, J.H. (1987), Instability of concentrated free surface flows, J. Geophys. Res. 92,C9, 9523–9530, DOI: 10.1029/JC092iC09p09523. http://dx.doi.org/10.1029/JC092iC09p09523 [Crossref]

  • [51] Tsai, C.W-S., and B.C. Yen (2001), Linear analysis of shallow water wave propagation in open channels, J. Eng. Mech. 127,5, 459–472, DOI: 10.1061/ (ASCE)0733-9399(2001)127:5(459). http://dx.doi.org/10.1061/(ASCE)0733-9399(2001)127:5(459) [Crossref]

  • [52] Vedernikov, V.V. (1946), Characteristic features of a liquid flow in open channel, C. R. Acad. Sci. URSS 52,3, 207–210.

  • [53] Venutelli, M. (2011), Analysis of dynamic wave model for unsteady flow in an open channel, J. Hydraul. Eng. ASCE 137,9, 1072–1078, DOI: 10.1061/ (ASCE) HY.1943-7900.0000405. http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000405 [Crossref]

  • [54] Zanuttigh, B., and A. Lamberti (2007), Instability and surge development in debris flows, Rev. Geophys. 45,3, RG3006, DOI: 10.1029/2005RG000175. http://dx.doi.org/10.1029/2005RG000175 [Crossref]

About the article

Published Online: 2013-03-16

Published in Print: 2013-06-01

Citation Information: Acta Geophysica, ISSN (Online) 1895-7455, ISSN (Print) 1895-6572, DOI: https://doi.org/10.2478/s11600-013-0108-2. Export Citation

© 2013 Institute of Geophysics, Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Francesca Campomaggiore, Cristiana Di Cristo, Michele Iervolino, and Andrea Vacca
Journal of Hydraulic Research, 2016, Page 1
Cristiana Di Cristo, Michele Iervolino, and Andrea Vacca
Journal of Mountain Science, 2014, Volume 11, Number 6, Page 1454
Cristiana Di Cristo, Michele Iervolino, and Andrea Vacca
Advances in Water Resources, 2015, Volume 81, Page 84
Cristiana Di Cristo, Michele Iervolino, and Andrea Vacca
Journal of Hydrologic Engineering, 2014, Volume 19, Number 5, Page 956

Comments (0)

Please log in or register to comment.
Log in