Jump to ContentJump to Main Navigation
Show Summary Details

Acta Geophysica

6 Issues per year

IMPACT FACTOR 2015: 0.945
5-year IMPACT FACTOR: 1.061

SCImago Journal Rank (SJR) 2015: 0.581
Source Normalized Impact per Paper (SNIP) 2015: 0.779
Impact per Publication (IPP) 2015: 0.937

Open Access
See all formats and pricing
Volume 62, Issue 1 (Feb 2014)


A large eddy based lattice-Boltzmann simulation of velocity distribution in an open channel flow with rigid and flexible vegetation

Jakub Gac
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warszawa, Poland
  • Email:
Published Online: 2013-11-20 | DOI: https://doi.org/10.2478/s11600-013-0178-1


The large eddy simulation method, based on a lattice-Boltzmann algorithm, was used to compute the vertical velocity profile in an open channel flow with submerged and emerged vegetation. The numerical method is characterized by the relatively short time of computation and low complexity. On the other hand, it allows a more realistic description of the vegetation properties relative to the methods commonly used in 1-D numerical models. For the proper conditions, the method developed in this work gives results similar to other numerical methods. These results are also in good agreement with the experimental data presented in other papers.

Keywords: lattice-Boltzmann model; large eddy simulation; numerical simulations; open channel flow

  • [1] Bhatnagar, P.L., E.P. Gross, and M. Krook (1954), A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 94,3, 511–525, DOI: 10.1103/PhysRev.94.511. http://dx.doi.org/10.1103/PhysRev.94.511 [Crossref]

  • [2] Chen, S., and G.D. Doolen (1998), Lattice Boltzmann method for fluid flows, Ann. Rev. Fluid Mech. 30, 329–364, DOI: 10.1146/annurev.fluid.30.1.329. http://dx.doi.org/10.1146/annurev.fluid.30.1.329 [Crossref]

  • [3] Defina, A., and A.Ch. Bixio (2005), Mean flow and turbulence in vegetated open channel flow, Water Resour. Res. 41,7, W07006, 1–12, DOI: 10.1029/2004 WR003475. http://dx.doi.org/10.1029/2004WR003475 [Web of Science] [Crossref]

  • [4] Eagleson, P.S. (1970), Dynamical Hydrology, McGraw-Hill, New York.

  • [5] Fernandino, M., K. Beronov, and T. Ytrehus (2009), Large eddy simulation of turbulent open duct flow using a lattice Boltzmann approach, Math. Comput. Simulat. 79,5, 1520–1526, DOI: 10.1016/j.matcom.2008.07.001. http://dx.doi.org/10.1016/j.matcom.2008.07.001 [Crossref] [Web of Science]

  • [6] Gac, J.M. (2011), Numerical modeling of the water velocity profiles in open channel flow with submerged rigid stems by use of lattice Boltzmann method, Sci. Rev. Eng. Env. Sci. 54, 294–303 (in Polish).

  • [7] Gac, J.M., and L. Gradoń (2011), A two-dimensional modeling of binary coalescence time using the two-color lattice-Boltzmann method, J. Aerosol Sci. 42,5, 355–363, DOI: 10.1016/j.jaerosci.2011.02.004. http://dx.doi.org/10.1016/j.jaerosci.2011.02.004 [Crossref] [Web of Science]

  • [8] Huai, W.X., Y.H. Zeng, Z.G. Xu, and Z.H. Yang (2009), Three-layer model for vertical velocity distribution in open channel flow with submerged rigid vegetation, Adv. Water Resour. 32,4, 487–492, DOI: 10.1016/j.advwatres.2008.11.014. http://dx.doi.org/10.1016/j.advwatres.2008.11.014 [Web of Science] [Crossref]

  • [9] Jiménez-Hornero, F.J., J.V. Giráldez, A.M. Laguna, S.J. Bennett, and C.V. Alonso (2007), Modelling the effects of emergent vegetation on an open-channel flow using a lattice model, Int. J. Numer. Method. Fluid 55,7, 655–672, DOI: 10.1002/fld.1488. http://dx.doi.org/10.1002/fld.1488 [Crossref]

  • [10] Koch, E.W., and G. Gust (1999), Water flow in tide- and wave-dominated beds of the seagrass Thalassia testudinum, Mar. Ecol. Prog. Ser. 184, 63–72, DOI: 10.3354/meps184063. http://dx.doi.org/10.3354/meps184063 [Crossref]

  • [11] Kubrak, E., J. Kubrak, and P.M. Rowiński (2008), Vertical velocity distributions through and above submerged, flexible vegetation, Hydrolog. Sci. J. 53,4, 905–920, DOI: 10.1623/hysj.53.4.905. http://dx.doi.org/10.1623/hysj.53.4.905 [Web of Science] [Crossref]

  • [12] Kubrak, E., J. Kubrak, and P.M. Rowiński (2012), Influence of a method of evaluation of the curvature of flexible vegetation elements on vertical distributions of flow velocities, Acta Geophys. 60,4, 1098–1119, DOI: 10.2478/s11600-011-0077-2. http://dx.doi.org/10.2478/s11600-011-0077-2 [Crossref] [Web of Science]

  • [13] Landau, L.D., and E.M. Lifshitz (1980), Statistical Physics, Elsevier Butterworth-Heinemann, Oxford.

  • [14] Lei, C., L. Cheng, and K. Kavanagh (1999), Re-examination of the effect of a plane boundary on force and vortex shedding of a circular cylinder, J. Wind Eng. Ind. Aerod. 80,3, 263–286, DOI: 10.1016/S0167-6105 (98)00204-9. http://dx.doi.org/10.1016/S0167-6105(98)00204-9 [Crossref]

  • [15] López, F., and M.H. García (2001), Mean flow and turbulence structure of openchannel flow through non-emergent vegetation, J. Hydraul. Eng. 127,5, 392–402, DOI: 10.1061/(ASCE)0733-9429(2001)127:5(392). http://dx.doi.org/10.1061/(ASCE)0733-9429(2001)127:5(392) [Crossref]

  • [16] Mayer, G., J. Páles, and G. Házi (2007), Large eddy simulation of subchannels using the lattice Boltzmann method, Ann. Nucl. Energy 34,1–2, 140–149, DOI: 10.1016/j.anucene.2006.10.002. http://dx.doi.org/10.1016/j.anucene.2006.10.002 [Crossref] [Web of Science]

  • [17] Nepf, H.M. (1999), Drag, turbulence, and diffusion in flow through emergent vegetation, Water Resour. Res. 35,2, 479–489, DOI: 10.1029/1998WR900069. http://dx.doi.org/10.1029/1998WR900069 [Crossref]

  • [18] Nepf, H., and M. Ghisalberti (2008), Flow and transport in channels with submerged vegetation, Acta Geophys. 56,3, 753–777, DOI: 10.2478/s11600-008-0017-y. http://dx.doi.org/10.2478/s11600-008-0017-y [Crossref] [Web of Science]

  • [19] Nezu, I., and H. Nakagawa (1993), Turbulence in Open-Channel Flows, Balkema, Rotterdam.

  • [20] Palau, G.P., T. Stoesser, A. Rummel, and W. Rodi (2007), Turbulent shallow flow through emergent vegetation. In: Proc. 5th Int. Conf. on Ecohydraulics, 4–7 December 2007, Tempe, USA.

  • [21] Psihogios, J., M.E. Kainourgiakis, A.G. Yiotis, A.Th. Papaioannou, and A.K. Stubos (2007), A lattice Boltzmann study of non-Newtonian flow in digitally reconstructed porous domains, Transp. Porous Med. 70,2, 279–292, DOI: 10.1007/s11242-007-9099-2. http://dx.doi.org/10.1007/s11242-007-9099-2 [Web of Science] [Crossref]

  • [22] Reis, T., and T.N. Phillips (2007), Lattice Boltzmann model for simulating immiscible two-phase flows, J. Phys. A 40,14, 4033–4053, DOI: 10.1088/1751-8113/40/14/018. http://dx.doi.org/10.1088/1751-8113/40/14/018 [Crossref]

  • [23] Righetti, M. (2008), Flow analysis in a channel with flexible vegetation using double-averaging method, Acta Geophys. 56,3, 801–823, DOI: 10.2478/s11600-008-0032-z. http://dx.doi.org/10.2478/s11600-008-0032-z [Web of Science] [Crossref]

  • [24] Righetti, M., and A. Armanini (2002), Flow resistance in open channel flows with sparsely distributed bushes, J. Hydrol. 269,1–2, 55–64, DOI: 10.1016/S0022-1694 (02)00194-4. http://dx.doi.org/10.1016/S0022-1694(02)00194-4 [Crossref]

  • [25] Shimizu, Y., and T. Tsujimoto (1994), Numerical analysis of turbulent open-channel flow over a vegetation layer using a k-ɛ turbulence model, J. Hydrosci. Hydraul. Eng. 11,2, 57–67.

  • [26] Smagorinsky, J. (1963), General circulation experiments with the primitive equations, Mon. Weather Rev. 91,3, 99–164, DOI: 10.1175/1520-0493 (1963) 091〈0099:GCEWTP〉2.3.CO;2. http://dx.doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 [Crossref]

  • [27] Stephan, U., and D. Gutknecht (2002), Hydraulic resistance of submerged flexible vegetation, J Hydrol. 269,1–2, 27–43, DOI: 10.1016/S0022-1694 (02)00192-0. http://dx.doi.org/10.1016/S0022-1694(02)00192-0 [Crossref] [Web of Science]

  • [28] Stoesser, T., G.P. Salvador, W. Rodi, and P. Diplas (2009), Large eddy simulation of turbulent flow through submerged vegetation, Transp. Porous Med. 78,3, 347–365, DOI: 10.1007/s11242-009-9371-8. http://dx.doi.org/10.1007/s11242-009-9371-8 [Web of Science] [Crossref]

  • [29] Sukhodolov, A., and T. Sukhodolova (2006), Evolution of mixing layers in turbulent flow over submersed vegetation: Field experiments and measurement study, In: R.M.L. Ferreira, E.C.T.L. Alves, J.G.A.B. Leal, and A.H. Cardoso (eds.), Proc. Int. Conf. on Fluvial Hydraulics “River Flow 2006”, 6–8 September 2006, Lisbon, Portugal, 525–534.

  • [30] Wang, C.-H., and J.-R. Ho (2011), A lattice Boltzmann approach for the non-Newtonian effect in the blood flow, Comput. Math. Appl. 62,1, 75–86, DOI: 10.1016/j.camwa.2011.04.051. http://dx.doi.org/10.1016/j.camwa.2011.04.051 [Crossref] [Web of Science]

  • [31] Zhang, X., J.W. Crawford, A.G. Bengough, and I.M. Young (2002), On boundary conditions in the lattice Boltzmann model for advection and anisotropic dispersion equation, Adv. Water Resour. 25,6, 601–609, DOI: 10.1016/S0309-1708 (02)00027-1. http://dx.doi.org/10.1016/S0309-1708(02)00027-1 [Crossref] [Web of Science]

  • [32] Zhou, J.G. (2001), An elastic-collision scheme for lattice Boltzmann methods, Int. J. Mod. Phys. C 12,3, 387–401, DOI: 10.1142/S0129183101001833. http://dx.doi.org/10.1142/S0129183101001833 [Crossref]

  • [33] Zhou, J.G. (2002), A lattice Boltzmann model for the shallow water equations, Comput. Method Appl. Mech. Eng. 191,32, 3527–3539, DOI: 10.1016/S0045-7825 (02)00291-8. http://dx.doi.org/10.1016/S0045-7825(02)00291-8 [Crossref]

  • [34] Zou, Q., and X. He (1997), On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids 9,6, 1591–1598, DOI: 10.1063/1.869307. http://dx.doi.org/10.1063/1.869307 [Crossref]

About the article

Published Online: 2013-11-20

Published in Print: 2014-02-01

Citation Information: Acta Geophysica, ISSN (Online) 1895-7455, DOI: https://doi.org/10.2478/s11600-013-0178-1. Export Citation

© 2013 Institute of Geophysics, Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Timothy I. Marjoribanks, Richard J. Hardy, Stuart N. Lane, and Daniel R. Parsons
Journal of Hydraulic Research, 2014, Volume 52, Number 6, Page 775

Comments (0)

Please log in or register to comment.
Log in